导航:首页 > 上市公司 > 生产手性催化剂的上市公司

生产手性催化剂的上市公司

发布时间:2022-08-24 14:25:12

1. 哪里有关于催化剂发展历史的图片资料

催化剂工业发展史 - 正文
━━━━━━━━━━━━━━━━━━━━━━━━
萌芽时期(20世纪以前)
奠基时期(20世纪初)
金属催化剂
氧化物催化剂
液态催化剂
大发展时期(20世纪30~60年代)
工业催化剂生产规模的扩大
工业催化剂品种的增加
有机金属催化剂的生产
选择性氧化用混合催化剂的发展
加氢精制催化剂的改进
分子筛催化剂的崛起
大型合成氨催化剂系列的形成
更新换代时期(20世纪70~80年代)
高效络合催化剂的出现
固体催化剂的工业应用
分子筛催化剂的工业应用
环境保护催化剂的工业应用
生物催化剂的工业应用
中国催化剂工业的发展
━━━━━━━━━━━━━━━━━━━━━━━━
从19世纪末至20世纪初,化学工业中利用催化技术的生产过程日益增多,为适应对工业催化剂的要求,逐步形成了产品品种多、制造技术进步、生产规模和产值与日俱增的催化剂工业。

萌芽时期(20世纪以前)

催化剂工业发展史与工业催化过程的开发及演变有密切关系。1740年英国医生J.沃德在伦敦附近建立了一座燃烧硫磺和硝石制硫酸的工厂,接着,1746年英国J.罗巴克建立了铅室反应器,生产过程中由硝石产生的氧化氮实际上是一种气态的催化剂,这是利用催化技术从事工业规模生产的开端。1831年P.菲利普斯获得二氧化硫在铂上氧化成三氧化硫的英国专利。19世纪60年代,开发了用氯化铜为催化剂使氯化氢进行氧化以制取氯气的迪肯过程。1875年德国人E.雅各布在克罗伊茨纳赫建立了第一座生产发烟硫酸的接触法装置,并制造所需的铂催化剂,这是固体工业催化剂的先驱。铂是第一个工业催化剂,现在铂仍然是许多重要工业催化剂中的催化活性组分。19世纪,催化剂工业的产品品种少,都采用手工作坊的生产方式。由于催化剂在化工生产中的重要作用,自工业催化剂问世以来,其制造方法就被视为秘密。

奠基时期(20世纪初)

在这一时期内,制成了一系列重要的金属催化剂,催化活性成分由金属扩大到氧化物,液体酸催化剂的使用规模扩大。制造者开始利用较为复杂的配方来开发和改善催化剂,并运用高度分散可提高催化活性的原理,设计出有关的制造技术,例如沉淀法、浸渍法、热熔融法、浸取法等,成为现代催化剂工业中的基础技术。催化剂载体的作用及其选择也受到重视,选用的载体包括硅藻土、浮石、硅胶、氧化铝等。为了适应于大型固定床反应器的要求,在生产工艺中出现了成型技术,已有条状和锭状催化剂投入使用。这一时期已有较大的生产规模,但品种较为单一,除自产自用外,某些广泛使用的催化剂已作为商品进入市场。同时,工业实践的发展推动了催化理论的进展。1925年H.S.泰勒提出活性中心理论,这对以后制造技术的发展起了重要作用。
金属催化剂 20世纪初,在英国和德国建立了以镍为催化剂的油脂加氢制取硬化油的工厂,1913年,德国巴登苯胺纯碱公司用磁铁矿为原料,经热熔法并加入助剂以生产铁系氨合成催化剂。1923年F.费歇尔以钴为催化剂,从一氧化碳加氢制烃取得成功。1925年,美国M.雷尼获得制造骨架镍催化剂的专利并投入生产(见图)

催化剂工业发展史
这是一种从Ni-Si合金用碱浸去硅而得的骨架镍。1926年,法本公司用铁、锡、钼等金属为催化剂,从煤和焦油经高压加氢液化生产液体燃料,这种方法称柏吉斯法。该阶段奠定了制造金属催化剂的基础技术,包括过渡金属氧化物、盐类的还原技术和合金的部分萃取技术等,催化剂的材质也从铂扩大到铁、钴、镍等较便宜的金属。
氧化物催化剂 鉴于19世纪开发的二氧化硫氧化用的铂催化剂易被原料气中的砷所毒化,出现了两种催化剂配合使用的工艺。德国曼海姆装置中第一段采用活性较低的氧化铁为催化剂,剩余的二氧化硫再用铂催化剂进行第二段转化。这一阶段,开发了抗毒能力高的负载型钒氧化物催化剂,并于1913年在德国巴登苯胺纯碱公司用于新型接触法硫酸厂,其寿命可达几年至十年之久。20年代以后,钒氧化物催化剂迅速取代原有的铂催化剂,并成为大宗的商品催化剂。制硫酸催化剂的这一变革,为氧化物催化剂开辟了广阔前景。
液态催化剂 1919年美国新泽西标准油公司开发以硫酸为催化剂从丙烯水合制异丙醇的工业过程,1920年建厂,至1930年,美国联合碳化物公司又建成乙烯水合制乙醇的工厂。这类液态催化剂均为简单的化学品。

大发展时期(20世纪30~60年代)

此阶段工业催化剂生产规模扩大,品种增多。在第二次世界大战前后,由于对战略物资的需要,燃料工业和化学工业迅速发展而且相互促进,新的催化过程不断出现,相应地催化剂工业也得以迅速发展。首先由于对液体燃料的大量需要,石油炼制工业中催化剂用量很大,促进了催化剂生产规模的扩大和技术进步。移动床和流化床反应器的兴起,促进催化剂工业创立了新的成型方法,包括小球、微球的生产技术。同时,由于生产合成材料及其单体的过程陆续出现,工业催化剂的品种迅速增多。这一时期开始出现生产和销售工业催化剂的大型工厂,有些工厂已开始多品种生产。
工业催化剂生产规模的扩大 这一时期曾对合成燃料和石油工业的发展起了重要作用。继柏吉斯过程之后,1933年,在德国,鲁尔化学公司利用费歇尔的研究成果建立以煤为原料从合成气制烃的工厂,并生产所需的钴负载型催化剂,以硅藻土为载体,该制烃工业生产过程称费歇尔-托罗普施过程,简称费托合成,第二次世界大战期间在德国大规模采用,40年代又在南非建厂。1936年E.J.胡德利开发成功经过酸处理的膨润土催化剂,用于固定床石油催化裂化过程,生产辛烷值为80的汽油,这是现代石油炼制工业的重大成就。1942年美国格雷斯公司戴维森化学分部推出用于流化床的微球形合成硅铝裂化催化剂,不久即成为催化剂工业中产量最大的品种。
工业催化剂品种的增加 首先开发了以煤为资源经乙炔制化学品所需的多种催化剂,其中制合成橡胶所需的催化剂开发最早。1931~1932年从乙炔合成橡胶单体2-氯-1,3-丁二烯的技术开发中,用氯化亚铜催化剂从乙炔生产乙烯基乙炔,40年代,以锂、铝及过氧化物为催化剂分别合成丁苯橡胶、丁腈橡胶、丁基橡胶的工业相继出现,这些反应均为液相反应。为了获得有关的单体,也出现了许多固体催化剂。在第二次世界大战期间出现用丁烷脱氢制丁二烯的Cr-Al-O催化剂,40年代中期投入使用。同一时期开发了乙苯脱氢生产苯乙烯用的氧化铁系催化剂。聚酰胺纤维(尼龙66)的生产路线,在30年代下半期建立后,为了获得大量的单体,40年代生产出苯加氢制环己烷用的固体镍催化剂,并开发环己烷液相氧化制环己酮(醇)用的钴系催化剂。在这一时期还开发了烯烃的羰基合成用的钴系络合催化剂。
在此阶段固体酸催化剂的生产和使用促进了固体酸催化剂理论的发展。为获得生产梯恩梯炸药的芳烃原料,1939年美国标准油公司开发了临氢重整技术,并生产所需的氧化铂-氧化铝、氧化铬-氧化铝催化剂。1949年美国环球油品公司开发长周期运转半再生式的固定床作业的铂重整技术,生产含铂和氧化铝的催化剂。在这种催化剂中,氧化铝不仅作为载体,也是作为活性组分之一的固体酸,为第一个重要的双功能催化剂。
50年代由于丰富的中东石油资源的开发,油价低廉,石油化工迅猛发展。与此同时,在催化剂工业中逐渐形成几个重要的产品系列,即石油炼制催化剂、石油化工催化剂和以氨合成为中心的无机化工催化剂。在催化剂生产上配方越来越复杂,这些催化剂包括用金属有机化合物制成的聚合用催化剂,为谋求高选择性而制作的多组元氧化物催化剂,高选择性的加氢催化剂,以及结构规整的分子筛催化剂等。由于化工科学技术的进步,形成催化剂产品品种迅速增多的局面。
有机金属催化剂的生产 过去所用的均相催化剂多数为酸、碱或简单的金属盐。1953年联邦德国K.齐格勒开发常压下使乙烯聚合的催化剂(C2H5)3Al-TiCl4,1955年投入使用;1954年意大利G.纳塔开发(C2H5)3Al-TiCl3体系用于丙烯等规聚合,1957年在意大利建厂投入使用。自从这一组成复杂的均相催化剂作为商品进入市场后,催化剂工业中开始生产某些有机金属化合物。目前,催化剂工业中,聚合用催化剂已成为重要的生产部门。
选择性氧化用混合催化剂的发展 选择性氧化是获得有机化学品的重要方法之一,早已开发的氧化钒和氧化钼催化剂,选择性都不够理想,于是大力开发适于大规模生产用的高选择性氧化催化剂。1960年俄亥俄标准油公司开发的丙烯氨化氧化合成丙烯腈工业过程投产,使用复杂的铋-钼-磷-氧/二氧化硅催化剂,后来发展成为含铋、钼、磷、铁、钴、镍、钾 7种金属组元的氧化物负载在二氧化硅上的催化剂。60年代还开发了用于丁烯氧化制顺丁烯二酸酐的钒-磷-氧催化剂,用于邻二甲苯氧化制邻苯二甲酸酐的钒-钛-氧催化剂,乙烯氧氯化用的氯化铜催化剂等,均属固体负载型催化剂。在生产方法上,由于浸渍法的广泛使用,生产各种不同性质的载体也成为该工业的重要内容,包括不同牌号的氧化铝、硅胶及某些低比表面积载体。由于流化床反应技术从石油炼制业移植到化工生产,现代催化剂厂也开始用喷雾干燥技术生产微球型化工催化剂。在均相催化选择性氧化中最重要的成就是1960年乙烯直接氧化制乙醛的大型装置投产,用氯化钯-氧化铜催化剂制乙醛的这一方法称瓦克法。
加氢精制催化剂的改进 为了发展石油化工,出现大量用于石油裂解馏分加氢精制的催化剂,其中不少是以前一时期的金属加氢催化剂为基础予以改进而成的。此外,还开发了裂解汽油加氢脱二烯烃用的镍-硫催化剂和钴-钼-硫催化剂,以及烃液相低温加氢脱除炔和二烯烃的钯催化剂。
分子筛催化剂的崛起 50年代中期,美国联合碳化物公司首先生产X-型和Y-型分子筛,它们是具有均一孔径的结晶性硅铝酸盐,其孔径为分子尺寸数量级,可以筛分分子。1960年用离子交换法制得的分子筛,增强了结构稳定性。1962年石油裂化用的小球分子筛催化剂在移动床中投入使用,1964年XZ-15微球分子筛在流化床中使用,将石油炼制工业提高到一个新的水平。自分子筛出现后,1964年联合石油公司与埃索标准油公司推出载金属分子筛裂化催化剂。利用分子筛的形状选择性,继60年代在炼油工业中取得的成就,70年代以后在化学工业中开发了许多以分子筛催化剂为基础的重要催化过程。在此时期,石油炼制工业催化剂的另一成就是1967年出现的铂-铼/氧化铝双金属重整催化剂。
大型合成氨催化剂系列的形成 60年代起合成氨工业中由烃类制氢的原料由煤转向石脑油和天然气。1962年美国凯洛格公司与英国卜内门化学工业公司 (ICI)分别开发了用碱或碱土金属助催化的负载型镍催化剂,可在加压条件下作业(3.3MPa)而不致结炭,这样有利于大型氨厂的节能。烃类蒸汽转换催化剂、加氢脱硫催化剂、高温变换催化剂、低温变换催化剂、氨合成催化剂、甲烷化催化剂等构成了合成氨厂的系列催化剂。(见彩图)

催化剂工业发展史 催化剂工业发展史

更新换代时期(20世纪70~80年代)

在这一阶段,高效率的络合催化剂相继问世;为了节能而发展了低压作业的催化剂;固体催化剂的造型渐趋多样化;出现了新型分子筛催化剂;开始大规模生产环境保护催化剂;生物催化剂受到重视。各大型催化剂生产企业纷纷加强研究和开发部门的力量,以适应催化剂更新换代周期日益缩短的趋势,力争领先,并加强对用户的指导性服务,出现了经营催化剂的跨国公司。重要特点是:
高效络合催化剂的出现 60年代,曾用钴络合物为催化剂进行甲醇羰基化制醋酸的过程,但操作压力很高,而且选择性不好。1970年左右出现了孟山都公司开发的低压法甲醇羰基化过程,使用选择性很高的铑络合物催化剂。后来又开发了膦配位基改性的铑络合物催化剂,用于从丙烯氢甲酰化制丁醛。这种催化剂与原有的钴络合物催化剂比较,具有很高的正构醛选择性,而且操作压力低,1975年以后美国联合碳化物公司大规模使用。利用铑络合物催化剂。从α-氨基丙烯酸加氢制手性氨基酸的过程,在70年代出现。这些催化剂均用于均相催化系统。继铂和钯之后,大约经历了一个世纪,铑成为用于催化剂工业的又一贵金属元素,在碳一化学发展中,铑催化剂将有重要意义。一氧化碳与氢直接合成乙二醇所用的铑络合物催化剂正在开发。络合催化剂的另一重大进展是70年代开发的高效烯烃聚合催化剂,这是由四氯化钛-烷基铝体系负载在氯化镁载体上形成的负载型络合催化剂,其效率极高,一克钛可生产数十至近百万克聚合物,因此不必从产物中分离催化剂,可节约生产过程中的能耗。
固体催化剂的工业应用 1966年英国卜内门化学工业公司开发低压合成甲醇催化剂,用铜-锌-铝-氧催化剂代替了以往高压法中用的锌-铬-铝-氧催化剂,使过程压力从24~30MPa降至5~10MPa,可适应当代烃类蒸汽转化制氢流程的压力范围,达到节能的目的。这种催化剂在70年代投入使用。为了达到提高生产负荷、节约能量的目标,70年代以来固体催化剂造型日益多样化,出现了诸如加氢精制中用的三叶形、四叶形催化剂,汽车尾气净化用的蜂窝状催化剂,以及合成氨用的球状、轮辐状催化剂。对于催化活性组分在催化剂中的分布也有一些新的设计,例如裂解汽油一段加氢精制用的钯/氧化铝催化剂,使活性组分集中分布在近外表层。
分子筛催化剂的工业应用 继石油炼制催化剂之后,分子筛催化剂也成为石油化工催化剂的重要品种。70年代初期,出现了用于二甲苯异构化的分子筛催化剂,代替以往的铂/氧化铝;开发了甲苯歧化用的丝光沸石(M-分子筛)催化剂。1974年莫比尔石油公司开发了ZSM-5型分子筛,用于择形重整,可使正烷烃裂化而不影响芳烃。70 年代末期开发了用于苯烷基化制乙苯的ZSM-5分子筛催化剂,取代以往的三氯化铝。80年代初,开发了从甲醇合成汽油的ZSM-5分子筛催化剂。在开发资源、 发展碳一化学中,分子筛催化剂将有重要作用。
环境保护催化剂的工业应用 1975年美国杜邦公司生产汽车排气净化催化剂,采用的是铂催化剂,铂用量巨大,1979年占美国用铂总量的57%,达23.33t(750000金衡盎司)。目前,环保催化剂与化工催化剂(包括合成材料、有机合成和合成氨等生产过程中用的催化剂)和石油炼制催化剂并列为催化剂工业中的三大领域。
生物催化剂的工业应用 在化学工业中使用生化方法的过程增多。60年代中期,酶固定化的技术进展迅速。1969年,用于拆分乙酰基-DL-氨基酸的固定化酶投入使用。70年代以后,制成了多种大规模应用的固定化酶。1973年制成生产高果糖糖浆的葡萄糖异构酶,不久即大规模使用。1985年,丙烯腈水解酶投入工业使用。生物催化剂的发展将引起化学工业生产的巨大变化。
此外,还发展用于能源工业的催化剂,例如燃料电池中用铂载在碳或镍上作催化剂,以促进氢与氧的化合。

中国催化剂工业的发展

第一个催化剂生产车间是永利铔厂触媒部,1959年改名南京化学工业公司催化剂厂。于1950年开始生产AI型合成氨催化剂、C-2型一氧化碳高温变换催化剂和用于二氧化硫氧化的Ⅵ型钒催化剂,以后逐步配齐了合成氨工业所需各种催化剂的生产。80年代中国开始生产天然气及轻油蒸汽转化的负载型镍催化剂。至1984年已有40多个单位生产硫酸、硝酸、合成氨工业用的催化剂。
为发展燃料化工,50年代初期,石油三厂开始生产页岩油加氢用的硫化钼-白土、硫化钨-活性炭、硫化钨-白土及纯硫化钨、硫化钼催化剂。石油六厂开始生产费托合成用的钴系催化剂,1960年起生产叠合用的磷酸-硅藻土催化剂。60年代初期,中国开发了丰富的石油资源,开始发展石油炼制催化剂的工业生产。当时,石油裂化催化剂最先在兰州炼油厂生产,1964年小球硅铝催化剂厂建成投产。70年代中国开始生产稀土-X型分子筛和稀土-Y型分子筛。70年代末在长岭炼油厂催化剂厂,开始生产共胶法硅铝载体稀土-Y型分子筛,以后在齐鲁石化公司催化剂厂开始生产高堆比、耐磨半合成稀土-Y型分子筛。60年代起中国即开始发展重整催化剂,60年代中期石油三厂开始生产铂催化剂,70年代先后生产出双金属铂-铼催化剂及多金属重整催化剂。 在加氢精制方面,60年代石油三厂开始生产钼-钴及钼-镍重整预加氢催化剂。70年代开始生产钼-钴-镍低压预加氢催化剂,80年代开始生产三叶形的加氢精制催化剂。
为发展有机化学工业,50年代末至60年代初开始制造乙苯脱氢用的铁系催化剂,乙炔加氯化氢制氯乙烯的氯化汞/活性炭催化剂,流化床中萘氧化制苯酐用的氧化钒催化剂,以及加氢用的骨架镍催化剂等。60年代中期为适应中国石油化工发展的需要,新生产的催化剂品种迅速增多,至80年代已生产多种精制烯烃的选择性加氢催化剂,并开始生产丙烯氨化氧化用的微球型氧化物催化剂,乙烯与醋酸氧化制醋酸乙烯酯的负载型金属催化剂,高效烯烃聚合催化剂以及治理工业废气的蜂窝状催化剂等。

2. 哪些化学家因研究催化剂而得诺贝尔奖

1990年
科里(E.J.Corey) (1928-)
科里,美国化学学家,创建了独特的有机合成理论—逆合成分析理论,使有机合成方案系统化并符合逻辑。他根据这一理论编制了第一个计算机辅助有机合成路线的设计程序,于1990年获奖。
60年代科里创造了一种独特的有机合成法-逆合成分析法,为实现有机合成理论增添了新的内容。与化学家们早先的做法不同,逆合成分析法是从小分子出发去一次次尝试它们那构成什么样的分子--目标分子的结构入手,分析其中哪些化学键可以断掉,从而将复杂大分子拆成一些更小的部分,而这些小部分通常已经有的或容易得到的物质结构,用这些结构简单的物质作原料来合成复杂有机物是非常容易的。他的研究成功使塑料、人造纤维、颜料、染料、杀虫剂以及药物等的合成变得简单易行,并且是化学合成步骤可用计算机来设计和控制。
他自己还运用逆合成分析法,在试管里合成了100种重要天然物质,在这之前人们认为天然物质是不可能用人工来合成的。科里教授还合成了人体中影响血液凝结和免疫系统功能的生理活性物质等,研究成果使人们延长了寿命,享受到了更高层次的生活。
1991年
恩斯特(R.Ernst) (1933-)
恩斯特,瑞士科学家,他发明了傅立叶变换核磁共振分光法和二维核磁共振技术而获奖。经过他的精心改进,使核磁共振技术成为化学的基本和必要的工具,他还将研究成果应用扩大到其他学科。
1966年他与美国同事合作,发现用短促的强脉冲取代核磁共振谱管用的缓慢扫描无线电波,能显著提高核磁共振技术的灵敏度。他的发现使该技术能用于分析大量更多种类的核和数量较少的物质,他在核磁共振光谱学领域的第二个重要贡献,是一种能高分辨率地."二维"地研究很大分子的技术。科学家们利用他精心改进的技术,能够确定有机和无机化合物,以及蛋白质等生物大分子的三维结构,研究生物分子与其他物质,如金属离子.水和药物等之间的相互作用,鉴定化学物种,研究化学反应速率。
1992年
马库斯(R.Marcus) (1923-)
马库斯,加拿大裔美国科学家,他用简单的数学方式表达了电子在分子间转移时分子体系的能量是如何受其影响的,他的研究成果奠定了电子转移过程理论的基础,以此获得1992年诺贝尔奖。
他从发现这一理论到获奖隔了20多年。他的理论是实用的,它可以解除腐蚀现象,解释植物的光合作用,还可以解释萤火虫发出的冷光,现在假如孩子们再提出"萤火虫为什么发光"的问题,那就更容易回答。
1993年
史密斯(M.Smith) (1932-2000)
加拿大科学家史密斯由于发明了重新编组DNA的“寡聚核苷酸定点突变”法,即定向基因的“定向诱变”而获得了1993年诺贝尔奖。该技术能够改变遗传物质中的遗传信息,是生物工程中最重要的技术。
这种方法首先是拚接正常的基因,使之改变为病毒DNA的单链形式,然后基因的另外小片断可以在实验室里合成,除了变异的基因外,人工合成的基因片断和正常基因的相对应部分分列成行,犹如拉链的两条边,全部戴在病毒上。第二个DNA链的其余部分完全可以制作,形成双螺旋,带有这种杂种的DNA病毒感染了细菌,再生的蛋白质就是变异性的,不过可以病选和测试,用这项技术可以改变有机体的基因,特别是谷物基因,改善它们的农艺特点。
利用史密斯的技术可以改变洗涤剂中酶的氨基酸残基(橘红色),提高酶的稳定性。
穆利斯(K.B.Mullis) (1944-)
美国科学家穆利斯(K.B.Mullis) 发明了高效复制DNA片段的“聚合酶链式反应(PCR)”方法,于1993年获奖。利用该技术可从极其微量的样品中大量生产DNA分子,使基因工程又获得了一个新的工具。
85年穆利斯发明了“聚合酶链反应”的技术,由于这项技术问世,能使许多专家把一个稀少的DNA样品复制成千百万个,用以检测人体细胞中艾滋病病毒,诊断基因缺陷,可以从犯罪的现场,搜集部分血和头发进行指纹图谱的鉴定。这项技术也可以从矿物质里制造大量的DNA分子,方法简便,操作灵活。
整个过程是把需要的化合物质倒在试管内,通过多次循环,不断地加热和降温。在反应过程中,再加两种配料,一是一对合成的短DNA片段,附在需要基因的两端作“引子”;第二个配料是酶,当试管加热后,DNA的双螺旋分为两个链,每个链出现“信息”,降温时,“引子”能自动寻找他们的DNA样品的互补蛋白质,并把它们合起来,这样的技术可以说是革命性的基因工程。
科学家已经成功地用PCR方法对一个2000万年前被埋在琥珀中的昆虫的遗传物质进行了扩增。
1994年
欧拉(G.A.Olah) (1927-)
欧拉,匈牙利裔美国人,由于他发现了使碳阳离子保持稳定的方法,在碳正离子化学方面的研究而获奖。研究范畴属有机化学,在碳氢化合物方面的成就尤其卓著。早在60年代就发表大量研究报告并享誉国际科学界,是化学领域里的一位重要人物,他的这项基础研究成果对炼油技术作出了重大贡献,这项成果彻底改变了对碳阳离子这种极不稳定的碳氢化合物的研究方式,揭开了人们对阳离子结构认识的新一页,更为重要的是他的发现可广泛用于从提高炼油效率,生产无铅汽油到改善塑料制品质量及研究制造新药等各个行业,对改善人民生活起着重要作用。
1995年
罗兰 (F.S.Rowland) (1927-)
克鲁岑、莫利纳、罗兰率先研究并解释了大气中臭氧形成、分解的过程及机制,指出:臭氧层对某些化合物极为敏感,空调器和冰箱使用的氟利昂、喷气式飞机和汽车尾气中所含的氮氧化物,都会导致臭氧层空洞扩大,他们于1995年获奖。
罗兰,美国化学家,发现人工制作的含氯氟烃推进剂会加快臭氧层的分解,破坏臭氧层,引起联合国重视,使全世界范围内禁止生产损耗臭氧层的气体。
莫利纳 (M.Molina) (1943-)
克鲁岑、莫利纳、罗兰率先研究并解释了大气中臭氧形成、分解的过程及机制,指出:臭氧层对某些化合物极为敏感,空调器和冰箱使用的氟利昂、喷气式飞机和汽车尾气中所含的氮氧化物,都会导致臭氧层空洞扩大,他们于1995年获奖。
臭氧层位于地球大气的平流层中,能吸收大部分太阳紫外线,保护地球上的生物免受损害,而正是他们阐明了导致臭氧层损耗的化学机理,并找到了人类活动会导致臭氧层损耗的证据,在这些研究推动下,保护臭氧层已经成为世界关注的重大环境课题,1987年签订蒙特利尔议定书,规定逐步在世界范围内禁止氯,氟,烃等消耗臭氧层物质的作用。
莫利纳,美国化学家,因20世纪70年代期间关于臭氧层分解的研究而获1995年诺贝尔奖。莫利纳与罗兰发现一些工业产生的气体会消耗臭氧层,这一发现导致20世纪后期的一项国际运动,限制含氯氟烃气体的广泛使用。他经过大气污染的实验,发现含氯氟烃气体上升至平流层后,紫外线照射将其分解成氯.氟和碳元素。此时,每一个氯原子在变得不活泼前可以摧毁将近10万个臭氧分子,莫利纳是描述这一理论的主要作者。科学家们的发现引起一场大范围的争论。80年代中期,当在南极地区上空发现所谓的臭氧层空洞--臭氧层被耗尽的区域时,他们的理论得到了证实。
克鲁岑 (P.Crutzen) (1933-)
克鲁岑、莫利纳、罗兰率先研究并解释了大气中臭氧形成、分解的过程及机制,指出:臭氧层对某些化合物极为敏感,空调器和冰箱使用的氟利昂、喷气式飞机和汽车尾气中所含的氮氧化物,都会导致臭氧层空洞扩大,他们于1995年获奖。
臭氧层位于地球大气的平流层中,能吸收大部分太阳紫外线,保护地球上的生物免受损害,而正是他们阐明了导致臭氧层损耗的化学机理,并找到了人类活动会导致臭氧层损耗的证据,在这些研究推动下,保护臭氧层已经成为世界关注的重大环境课题,1987年签订蒙特利尔议定书,规定逐步在世界范围内禁止氯氟烃等消耗臭氧层物质的作用。
克鲁岑,荷兰人,由于证明了氮的氧化物会加速平流层中保护地球不受太阳紫外线辐射的臭氧的分解而获奖,虽然他的研究成果一开始没有被广泛接受,但为以后的其他化学家的大气研究开通了道路。
1996年
克鲁托(H.W.Kroto)(1939-)
克鲁托H.W.Kroto)与斯莫利(R.E.Smalley)、柯尔(R.F.Carl)一起,因发现碳元素的第三种存在形式—C60(又称“富勒烯”“巴基球”),而获1996年诺贝尔化学奖.
斯莫利 (R.E.Smalley)(1943-)
斯莫利 (R.E.Smalley)与柯尔(R.F.Carl)、克鲁托(H.W.Kroto)一起,因发现碳元素的第三种存在形式—C60(又称“富勒烯”“巴基球”),而获1996年诺贝尔化学奖.
柯尔 (R.F.Carl)(1933-)
柯尔(R.F.Carl)美国人、斯莫利(R.E.Smalley)美国人、克鲁托(H.W.Kroto)英国人,因发现碳元素的第三种存在形式—C60(又称“富勒烯”“巴基球”)而获1996年诺贝尔化学奖.
1967年建筑师巴克敏斯特.富勒(R.Buckminster Fuller)为蒙特利尔世界博览会设计了一个球形建筑物,这个建筑物18年后为碳族的结构提供了一个启示。富勒用六边形和少量五边形创造出“弯曲”的表面。获奖者们假定含有60个碳原子的簇“C60”包含有12个五边形和20个六边形,每个角上有一个碳原子,这样的碳簇球与足球的形状相同。他们称这样的新碳球C60为“巴克敏斯特富勒烯”(buckminsterfullerene),在英语口语中这些碳球被称为“巴基球”(buckyball)。
克鲁托对含碳丰富的红巨星的特殊兴趣,导致了富勒烯的发现。多年来他一直有个想法:在红巨星附近可以形成碳的长链分子。柯尔建议与斯莫利合作,利用斯莫利的设备,用一个激光束将物质蒸发并加以分析。
1985年秋柯尔、克鲁托和斯莫利经过一周紧张工作后,十分意外地发现碳元素也可以非常稳定地以球的形状存在。他们称这些新的碳球为富勒烯(fullerene).这些碳球是石墨在惰性气体中蒸发时形成的,它们通常含有60或70个碳原子。围绕这些球,一门新型的碳化学发展起来了。化学家们可以在碳球中嵌入金属和稀有惰性气体,可以用它们制成新的超导材料,也可以创造出新的有机化合物或新的高分子材料。富勒烯的发现表明,具有不同经验和研究目标的科学家的通力合作可以创造出多么出人意外和迷人的结果。
柯尔、克鲁托和斯莫利早就认为有可能在富勒烯的笼中放入金属原子。这样金属的性能会完全改变。第一个成功的实验是将稀土金属镧嵌入富勒烯笼中。
在富勒烯的制备方法中略加以改进后现在已经可以从纯碳制造出世界上最小的管—纳米碳管。这种管直径非常小,大约1毫微米。管两端可以封闭起来。由于它独特的电学和力学性能,将可以在电子工业中应用。
在科学家们能获得富勒烯后的六年中已经合成了1000多种新的化合物,这些化合物的化学、光学、电学、力学或生物学性能都已被测定。富勒烯的生产成本仍太高,因此限制了它们的应用。
今天已经有了一百多项有关富勒烯的专利,但仍需探索,以使这些激动人心的富勒烯在工业上得到大规模的应用。
1997年
因斯.斯寇(Jens C.Skou) (1918-)
1997年化学奖授予保罗.波耶尔(美国)、约翰.沃克(英国)、因斯.斯寇(丹麦)三位科学家,表彰他们在生命的能量货币--腺三磷的研究上的突破。
因斯.斯寇最早描述了离子泵——一个驱使离子通过细胞膜定向转运的酶,这是所有的活细胞中的一种基本的机制。自那以后,实验证明细胞中存在好几种类似的离子泵。他发现了钠离子、钾离子-腺三磷酶——一种维持细胞中钠离子和钾离子平衡的酶。细胞内钠离子浓度比周围体液中低,而钾离子浓度则比周围体液中高。钠离子、钾离子-腺三磷酶以及其他的离子泵在我们体内必须不断地工作。如果它们停止工作、我们的细胞就会膨胀起来,甚至胀破,我们立即就会失去知觉。驱动离子泵需要大量的能量——人体产生的腺三磷中,约三分之一用于离子泵的活动。
约翰.沃克(John E.Walker) (1941-)
约翰.沃克与另两位科学家同获得1997年诺贝尔化学奖。约翰.沃克把腺三磷制成结晶,以便研究它的结构细节。他证实了波耶尔关于腺三磷怎样合成的提法,即“分子机器”,是正确的。1981年约翰.沃克测定了编码组成腺三磷合成酶的蛋白质基因(DNA).
保罗.波耶尔(Panl D.Boyer) (1918-)
1997年化学奖授予保罗.波耶尔(美国)、约翰.沃克(英国)、因斯.斯寇(丹麦)三位科学家,表彰他们在生命的能量货币--腺三磷的研究上的突破。保罗.波耶尔与约翰.沃克阐明了腺三磷体合成酶是怎样制造腺三磷的。在叶绿体膜、线粒体膜以及细菌的质膜中都可发现腺三磷合成酶。膜两侧氢离子浓度差驱动腺三磷合成酶合成腺三磷。
保罗.波耶尔运用化学方法提出了腺三磷合成酶的功能机制,腺三磷合成酶像一个由α亚基和β亚基交替组成的圆柱体。在圆柱体中间还有一个不对称的γ亚基。当γ亚基转动时(每秒100转),会引起β亚基结构的变化。保罗.波耶尔把这些不同的结构称为开放结构、松散结构和紧密结构。
1998年
约翰.包普尔(John A.Pople) (1925-)
约翰.包普尔(John A.Pople),美国人,他提出波函数方法而获诺贝尔化学奖。他发展了化学中的计算方法,这些方法是基于对薛定谔方程(Schrodinger equation)中的波函数作不同的描述。他创建了一个理论模型化学,其中用一系列越来越精确的近似值,系统地促进量子化学方程的正确解析,从而可以控制计算的精度,这些技术是通过高斯计算机程序向研究人员提供的。今天这个程序在所有化学领域中都用来作量子化学的计算。
瓦尔特.科恩(Walter Kohn) (1923-)
瓦尔特.科恩(Walter Kohn),美国人,因他提出密度函数理论,而获诺贝尔化学奖。
早在1964-1965年瓦尔特.科恩就提出:一个量子力学体系的能量仅由其电子密度所决定,这个量比薛定谔方程中复杂的波函数更容易处理得多。他同时还提供一种方法来建立方程,从其解可以得到体系的电子密度和能量,这种方法称为密度泛函理论,已经在化学中得到广泛应用,因为方法简单,可以应用于较大的分子。
1999年
艾哈迈德·泽维尔 (1946-)
艾哈迈德·泽维尔1946年2月26日生于埃及。后在美国亚历山德里亚大学获得理工学士和硕士学位;又在宾夕法尼亚大学获得博士学位。1976年起在加州理工学院任教。1990年成为加州理工化学系主任。他目前是美国科学院、美国哲学院、第三世界科学院、欧洲艺术科学和人类学院等多家科学机构的会员。
1998年埃及还发行了一枚印有他本人肖像的邮票以表彰他在科学上取得的成就。
1999年诺贝尔化学奖授予埃及出生的科学家艾哈迈德·泽维尔(Ahmed H.Zewail),以表彰他应用超短激光闪光成照技术观看到分子中的原子在化学反应中如何运动,从而有助于人们理解和预期重要的化学反应,为整个化学及其相关科学带来了一场革命。
早在30年代科学家就预言到化学反应的模式,但以当时的技术条件要进行实证无异于梦想。80年代末泽维尔教授做了一系列试验,他用可能是世界上速度最快的激光闪光照相机拍摄到一百万亿分之一秒瞬间处于化学反应中的原子的化学键断裂和新形成的过程。这种照相机用激光以几十万亿分之一秒的速度闪光,可以拍摄到反应中一次原子振荡的图像。他创立的这种物理化学被称为飞秒化学,飞秒即毫微微秒(是一秒的千万亿分之一),即用高速照相机拍摄化学反应过程中的分子,记录其在反应状态下的图像,以研究化学反应。人们是看不见原子和分子的化学反应过程的,现在则可以通过泽维尔教授在80年代末开创的飞秒化学技术研究单个原子的运动过程。
泽维尔的实验使用了超短激光技术,即飞秒光学技术。犹如电视节目通过慢动作来观看足球赛精彩镜头那样,他的研究成果可以让人们通过“慢动作”观察处于化学反应过程中的原子与分子的转变状态,从根本上改变了我们对化学反应过程的认识。泽维尔通过“对基础化学反应的先驱性研究”,使人类得以研究和预测重要的化学反应,泽维尔因而给化学以及相关科学领域带来了一场革命。
2000年
艾伦-J-黑格 (1936-)
艾伦-J-黑格,美国公民,64岁,1936年生于依阿华州苏城。现为加利福尼亚大学的固体聚合物和有机物研究所所长,是一名物理学教授。
获奖理由:他是半导体聚合物和金属聚合物研究领域的先锋,目前主攻能够用作发光材料的半导体聚合物,包括光致发光、发光二极管、发光电气化学电池以及激光等等。这些产品一旦研制成功,将可以广泛应用在高亮度彩色液晶显示器等许多领域。
艾伦-G-马克迪尔米德 (1929-)
艾伦-G-马克迪尔米德,来自美国宾夕法尼亚大学,今年71岁,他出生于新西兰,曾就读于新西兰大学和美国威斯康星大学以及英国的剑桥大学。1955年,他开始在宾夕法尼亚大学任教。他是最早从事研究和开发导体塑料的科学家之一。
获奖理由:他从1973年就开始研究能够使聚合材料能够象金属一样导电的技术,并最终研究出了有机聚合导体技术。这种技术的发明对于使物理学研究和化学研究具有重大意义,其应用前景非常广泛。
他曾发表过六百多篇学术论文,并拥有二十项专利技术。
白川英树 (1936-)
白川英树今年64岁,已经退休,现在是日本筑波大学名誉教授。白川1961年毕业于东京工业大学理工学部化学专业,曾在该校资源化学研究所任助教,1976年到美国宾夕法尼亚大学留学,1979年回国后到筑波大学任副教授,1982年升为教授。1983年他的研究论文《关于聚乙炔的研究》获得日本高分子学会奖,他还著有《功能性材料入门》、《物质工学的前沿领域》等书。
获奖理由:白川英树在发现并开发导电聚合物方面作出了引人注目的贡献。这种聚合物目前已被广泛应用到工业生产上去。他因此与其他两位美国同行分享了2000年诺贝尔化学奖。
2001年
威廉·诺尔斯(W.S.Knowles) (1917-)
2001年诺贝尔化学奖授予美国科学家威廉·诺尔斯、日本科学家野依良治和美国科学家巴里·夏普雷斯,以表彰他们在不对称合成方面所取得的成绩,三位化学奖获得者的发现则为合成具有新特性的分子和物质开创了一个全新的研究领域。现在,像抗生素、消炎药和心脏病药物等,都是根据他们的研究成果制造出来的。
瑞典皇家科学院的新闻公报说,许多化合物的结构都是对映性的,好像人的左右手一样,这被称作手性。而药物中也存在这种特性,在有些药物成份里只有一部分有治疗作用,而另一部分没有药效甚至有毒副作用。这些药是消旋体,它的左旋与右旋共生在同一分子结构中。在欧洲发生过妊娠妇女服用没有经过拆分的消旋体药物作为镇痛药或止咳药,而导致大量胚胎畸形的"反应停"惨剧,使人们认识到将消旋体药物拆分的重要性。2001年的化学奖得主就是在这方面做出了重要贡献。他们使用一种对映体试剂或催化剂,把分子中没有作用的一部分剔除,只利用有效用的一部分,就像分开人的左右手一样,分开左旋和右旋体,再把有效的对映体作为新的药物,这称作不对称合成。
诺尔斯的贡献是在1968年发现可以使用过渡金属来对手性分子进行氢化反应,以获得具有所需特定镜像形态的手性分子。他的研究成果很快便转化成工业产品,如治疗帕金森氏症的药L-DOPA就是根据诺尔斯的研究成果制造出来的。
1968年,诺尔斯发现了用过渡金属进行对映性催化氢化的新方法,并最终获得了有效的对映体。他的研究被迅速应用于一种治疗帕金森症药物的生产。后来,野依良治进一步发展了对映性氢化催化剂。夏普雷斯则因发现了另一种催化方法——氧化催化而获奖。他们的发现开拓了分子合成的新领域,对学术研究和新药研制都具有非常重要的意义。其成果已被应用到心血管药、抗生素、激素、抗癌药及中枢神经系统类药物的研制上。现在,手性药物的疗效是原来药物的几倍甚至几十倍,在合成中引入生物转化已成为制药工业中的关键技术。
诺尔斯与野依良治分享诺贝尔化学奖一半的奖金。夏普雷斯现为美国斯克里普斯研究学院化学教授,将获得另一半奖金。
野依良治(R.Noyori) (1938-)
2001年诺贝尔化学奖授予美国科学家威廉·诺尔斯、日本科学家野依良治和美国科学家巴里·夏普雷斯,以表彰他们在不对称合成方面所取得的成绩。
瑞典皇家科学院的新闻公报说,许多化合物的结构都是对映性的,好像人的左右手一样,这被称作手性。而药物中也存在这种特性,在有些药物成份里只有一部分有治疗作用,而另一部分没有药效甚至有毒副作用。这些药是消旋体,它的左旋与右旋共生在同一分子结构中。在欧洲发生过妊娠妇女服用没有经过拆分的消旋体药物作为镇痛药或止咳药,而导致大量胚胎畸形的"反应停"惨剧,使人们认识到将消旋体药物拆分的重要性。2001年的化学奖得主就是在这方面做出了重要贡献。他们使用一种对映体试剂或催化剂,把分子中没有作用的一部分剔除,只利用有效用的一部分,就像分开人的左右手一样,分开左旋和右旋体,再把有效的对映体作为新的药物,这称作不对称合成。
1968年,诺尔斯发现了用过渡金属进行对映性催化氢化的新方法,并最终获得了有效的对映体。他的研究被迅速应用于一种治疗帕金森症药物的生产。后来,野依良至进一步发展了对映性氢
2002年
瑞典皇家科学院于2002年10月9日宣布,将2002年诺贝尔化学奖授予美国科学家约翰·芬恩、日本科学家田中耕一和瑞士科学家库尔特·维特里希,以表彰他们在生物大分子研究领域的贡献。
2002年诺贝尔化学奖分别表彰了两项成果,一项是约翰·芬恩与田中耕一“发明了对生物大分子进行确认和结构分析的方法”和“发明了对生物大分子的质谱分析法”,他们两人将共享2002年诺贝尔化学奖一半的奖金;另一项是瑞士科学家库尔特·维特里希“发明了利用核磁共振技术测定溶液中生物大分子三维结构的方法”,他将获得2002年诺贝尔化学奖另一半的奖金。
2003年
2003年诺贝尔化学奖授予美国科学家彼得·阿格雷和罗德里克·麦金农,分别表彰他们发现细胞膜水通道,以及对离子通道结构和机理研究作出的开创性贡献。他们研究的细胞膜通道就是人们以前猜测的“城门”。
2004年
2004年诺贝尔化学奖授予以色列科学家阿龙·切哈诺沃、阿夫拉姆·赫什科和美国科学家欧文·罗斯,以表彰他们发现了泛素调节的蛋白质降解。其实他们的成果就是发现了一种蛋白质“死亡”的重要机理。
2005年
三位获奖者分别是法国石油研究所的伊夫·肖万、美国加州理工学院的罗伯特·格拉布和麻省理工学院的理查德·施罗克。他们获奖的原因是在有机化学的烯烃复分解反应研究方面作出了贡献。烯烃复分解反应广泛用于生产药品和先进塑料等材料,使得生产效率更高,产品更稳定,而且产生的有害废物较少。瑞典皇家科学院说,这是重要基础科学造福于人类、社会和环境的例证。
2006年
美国科学家罗杰·科恩伯格因在“真核转录的分子基础”研究领域所作出的贡献而独自获得2006年诺贝尔化学奖。瑞典皇家科学院在一份声明中说,科恩伯格揭示了真核生物体内的细胞如何利用基因内存储的信息生产蛋白质,而理解这一点具有医学上的“基础性”作用,因为人类的多种疾病如癌症、心脏病等都与这一过程发生紊乱有关。
2007年
诺贝尔化学奖授予德国科学家格哈德·埃特尔,以表彰他在“固体表面化学过程”研究中作出的贡献,他获得的奖金额将达1000万瑞典克朗(约合154万美元)。
2008年
三位美国科学家,美国Woods Hole海洋生物学实验室的Osamu Shimomura(下村修)、哥伦比亚大学的Martin Chalfie和加州大学圣地亚哥分校的 Roger Y. Tsien (钱永健,钱学森的堂侄)因发现并发展了绿色荧光蛋白(GFP) 而获得该奖项。
Osamu Shimomura,1928年生于日本京都,1960年获得日本名古屋大学有机化学博士学位,美国Woods Hole海洋生物学实验室(MBL)和波士顿大学医学院名誉退休教授。Martin Chalfie,1947年出生,成长与美国芝加哥,1977年获得美国哈佛大学神经生物学博士学位,1982年起任美国哥伦比亚大学生物学教授。Roger Y. Tsien,1952年出生于美国纽约,1977年获得英国剑桥大学生理学博士学位,1989年起任美国加州大学圣地亚哥分校教授。

3. 国内较大的催化剂生产厂家

小唐,你是问炼油催化剂还是别的 给你提供: 一、国内四大炼油催化剂生产厂家 1)长岭炼化公司催化剂厂2)兰州炼油化工催化剂厂3)齐鲁石化公司催化剂厂4)抚顺石油三厂催化剂厂 二、脱硝催化剂生产厂家 1)东方锅炉(目前国内第一家生产水电厂烟气脱硝催化剂的企业,实力很强的一家) 2)远达环保(燃煤电厂废气脱硝) 三)金属催化剂生产厂家 1)宝鸡市瑞科医药化工有限公司(国内最大的贵金属催化剂生产商) 2)临沂市和平贵金属催化剂有限公司(中国最大的电解银催化剂生产企业) 好多啊,先帮你查这些

4. 生产PTA的上市公司有哪些

生产PTA的上市公司有:桐昆股份、恒力股份、荣盛石化、恒逸石化、珠海港、S仪化、黑化股份等。
1、桐昆集团股份有限公司(601233):
主营业务:各类民用涤纶长丝的生产、销售,以及涤纶长丝主要原料之一的PTA(精对苯二甲酸)的生产。
2、恒力石化股份有限公司(600346):
主营业务:聚酯切片、民用涤纶长丝、工业涤纶长丝、聚酯薄膜、工程塑料和热电产品的生产、研发和销售
3、恒逸石化股份有限公司(000703):
主营业务:对石化行业的投资;有色金属、建筑材料和机电产品及配件;货运代理;经营本企业及本企业成员单位资产产品和生产、科研所需的原材料、机械设备、仪器仪表、零配件及相关进出口业务。

产品名称:精对苯二甲酸(PTA) 、聚酯切片 、聚酯瓶片 、涤纶预取向丝(POY) 、涤纶全拉伸丝(FDY) 、涤纶拉伸变形丝(DTY) 、涤纶短纤
4、荣盛石化股份有限公司(002493):
主营业务:化工品和化学纤维的开发、生产和销售。
产品名称:芳烃 、PTA 、聚酯切片及涤纶丝

(4)生产手性催化剂的上市公司扩展阅读:
PTA的生产方法:
以对二甲苯为原料,液相氧化生成粗对苯二甲酸,再经加氢精制,结晶,分离,干燥,得到精对苯二甲酸。
PTA为石油的下端产品。石油经过一定的工艺过程生产出轻汽油(别名石脑油),从石脑油中提炼出MX(混二甲苯),再提炼出PX(对二甲苯)。
PTA以PX(配方占65%-67%)为原料,以醋酸为溶剂,在催化剂的作用下经空气氧化(氧气占35%-33%),生成粗对苯二甲酸。然后对粗对苯二甲酸进行加氢精制,去除杂质,再经结晶、分离、干燥、制得精对苯二甲酸产品,即PTA成品。
参考资料来源:
桐昆股份-同花顺
恒力股份-同花顺
恒逸石化-同花顺
荣盛石化-同花顺
PTA-网络

5. 目前国内有哪些板式脱硝催化剂生产厂

大唐南京环保科技有限责任公司
中国大唐集团环境技术有限公司投资组建的脱硝催化剂专业制造企业。
地处南京江宁经济技术开发区,占地面积150亩,平板式脱硝催化剂年产量为30000立方米,是世界供应量最大的,集研发、实验、生产、检测和人才培养为一体的,
同时拥有行业一流实验室的脱硝催化剂制造基地。

6. 生产绿氢的上市公司

1.亿华通:最纯正燃料电池标的,业务涵盖电堆和系统; 腾龙股份:燃料电池龙头新源动力第一大股东; 大洋电机:参股巴拉德加码布局氢燃料电池业务,公司燃料电池产品包括电池模组、整车控制器、电机驱动系统等,并通过参股产业链相关公司打通氢气储运、加氢、燃料电池系统开发等环节;
2.深冷股份:参股徐州铭寰,具有丰富的燃料电池、重整制氢系统开发、制造及系统集成经验,同时公司产品智能加氢枪是为燃料电池汽车进行氢气加注的核心零部件设备; 中通客车:已有5款燃料电池客车; 宇通客车:氢燃料电池汽车市场份额大约为8%; 福田汽车:国内最早从事燃料电池客车研发并获得第一款公告的公司; 美锦能源:控股华南地区最大的氢燃料电池商用车整车企业飞驰汽车,参股的广东国鸿氢能科技有限公司生产燃料电池电堆及燃料电池动力系统总成;
3.潍柴动力:已建成两万套级产能的燃料电池发动机及电堆生产线,是目前全球最大的氢燃料电池发 雄韬股份:布局氢燃料电池全产业链; 东方电气:具备动力燃料电池自主技术,全国首批高原氢燃料电池发动机成功交付; 雪人股份:并购参股瑞典SRM公司,拥有了全球领先的燃料电池空压机及氢循环泵技术和品牌,已向国内21家整车和发动机企业供货; 汉钟精机:已研发出应用于燃料电池产业的空气压缩机产品; 鲍斯股份:鲍斯股份深耕压缩机领域,在燃料电池压缩机领域有望把握进口替代的机遇; 安泰科技:金属双极板已实现巴拉德供货,另外拥有气体扩散层等业务,在质子交换膜和催化剂布局; 百利科技:成功研发高温燃料电池质子交换膜; 贵研铂业:领跑国产燃料电池催化剂;
4.龙蟠科技:投资安徽燃料电池企业明天氢能,设立子公司江苏铂炭氢能,重点布局氢燃料电池催化 道氏技术:氢燃料电池膜电极等材料的研制和销售;

7. 手性技术

生命是由碳元素组成的,碳原子在形成有机分子的时候,4个原子或基团可以通过4根共价键形成三维的空间结构。由于相连的原子或基团不同,它会形成两种分子结构。这两种分子拥有完全一样的物理、化学性质。比如它们的沸点一样,溶解度和光谱也一样。但是从分子的组成形状来看,它们依然是两种分子。这种情形像是镜子里和镜子外的物体那样,看上去互为对应。由于是三维结构,它们不管怎样旋转都不会重合, 如果你注意观察过你的手,你会发现你的左手和右手看起来似乎一模一样,但无论你怎样放,它们在空间上却无法完全重合。如果你把你的左手放在镜子前面,你会发现你的右手才真正与你的左手在镜中的像是完全一样的,你的右手与左手在镜中的像可以完全重叠在一起。实际上,你的右手正是你的左手在镜中的像,反之亦然。所以又叫手性分子。

至于其分类,按不同标准可以有不同的分类方法,比如正负之分。

8. 阿拉丁试剂的生产产品

科研用试剂是科学和企业研发研究中的必需和关键物质基础,在生命科学、新药创制、新型材料、新能源、食品、环境等重点领域科学研究和研发有广泛需求,是科技创新发展的重要支撑和保证。科研用试剂种类多,应用广,质量要求高,更新换代快,工程化和标准化难度大。我国科研用试剂总体水平与国外先进水平有较大差距,核心高端化学、生物和新材料科研试剂仍然大量需要依赖进口。阿拉丁就是针对我国近几年国内不生产而靠大量进口的试剂种类进行攻关,成功开发了近35000种试剂产品,其中超过50%的产品均为公司专有产品,具有很强的市场竞争力。
阿拉丁专注于分析色谱、高端化学、生命科学和材料科学四大领域,试剂品种有如下几类:
分析色谱试剂可以细分下面几类:分析试剂,分析标准品,气相色谱,高压液相色谱,离子传感器材料,树脂与LC分离介质,溶剂等。
高端化学试剂可以细分下面几类:不对称合成,催化和无机化学,化学生物学,香精香料,杂环砌块,有机砌块,有机金属试剂,特殊合成,稳定性同位素产品。
生命科学试剂可以细分下面几类:生化试剂,癌症研究,细胞生物学,细胞培养,血液学和组织学,代谢组学,微生物学,分子生物学,营养学研究,植物生物技术,蛋白组学等试剂。
材料科学试剂可以细分下面几类:替代能源,生物材料,金属和陶瓷科学,微米/纳米电子材料,纳米材料,有机和印刷电子学,高分子科学。 阿拉丁不断致力于使自己的产品和对客户的服务达到最高质量标。阿拉丁提供一种独特的服务解决方案。阿拉丁认为,服务战略应当以每个产品对客户目标的影响为导向。
符合全球标准阿拉丁的QC质控规范全部参考全球标准,任何物质必须经过定性和定量进行质量把控,阿拉丁拥有全球最先进的仪器,产品定性包括核磁(NMR)、X-射线衍射(XRD)、红外(IR)、熔点检测、折光率检测、各种电泳、粒度检测、比旋光度检测和密度检测等等,定量包括核磁(NMR)、液相色谱(HPLC)、气相色谱(GC)、质谱(MS)、电泳、荧光光谱(XRF)、荧光定量和各类滴定等等,提供网站直接浏览打印,确保产品质量结果的可跟踪性和可靠性。不同生产环境,严格的ERP质量监督把控程序(QA)会及时发现产生不合格产品的漏洞,配合ISO9001 质量体系,阿拉丁采用了全方位综合分析技术量身打造每一个产品,确保所有阿拉丁的产品批次的均一性。
净含量和安全性 每天,阿拉丁公司的品牌同广大客户发生着数万次的亲密接触。阿拉丁始终如一地坚持产品质量安全的传承和实践,建立了全球性的产品安全评估机构和技术力量,执行严格的产品安全宗旨和政策,向客户提供优质的产品和服务。 阿拉丁的解决方案确保工艺过程符合国内外法规,每个产品均提供MSDS安全操作说明书,COA质检证书,以保持客户员工和财产的安全,并帮助客户完全按符合要求的操作规范操作。
产品标签和可追溯性阿拉丁的标签全部采用二维码设计,包含有产品的批次、货号,以及原料的批次和货号。任何一个环节出了质量问题,我们都可以溯源。为了遵守法规,阿拉丁将来源不同的数据汇总到简明易懂的标签上。信息技术确保精确跟踪和贴标材料成分、含量信息和原料来源。阿拉丁的贴标解决方案易于集成到现有系统中,从而确保合规、安全和精确。
阿拉丁拥有从硕士到博士一批高素质一流的研发团队,针对化学细分领域,团结合作,钻研比拼。阿拉丁研发团队以深厚的基本功,创新的精神、卓越的合成技术,针对客户的不同需求,提供最具竞争力的产品和服务。
阿拉丁品牌已成为国内试剂和科研领域最具知名度的品牌,各行各业领域的科研人员众口皆碑。
阿拉丁以“质量控制标准化、共性关键技术规范化、产业化基地工程化、产学研用联盟机制化”为核心目标,以开展我国高纯化学试剂、生命科学试剂、新材料试剂等质量及标准规范研究,提高高纯试剂产品质量为主要内容,深入研究高纯试剂制备关键技术,开展高端试剂工程化研究及特殊包装储运过程质控评估体系研究。
阿拉丁通过技术攻关和机制、模式的创新,重点解决了研发用试剂标准规范的制定及工程化研究,首次建立了色谱级、农残级、光谱级、质谱级、分子生物学级、液质连用级、气质连用级、细胞生物学级等近万种高纯试剂分析方法体系;这些产品的质控规范方法体系都标注在本公司的官网上,可以在线查询。建立了同位素试剂、无水试剂、格氏试剂、纳米试剂、产品的包装物及储运质控和评价体系;建立了有机同位素试剂质控和评价体系;建立了科研用高纯试剂的产学研用相结合的良性机制模式。
高端化学类试剂产品核心技术包括:
1、金属有机反应和金属有机化合物的纯化
2、催化活性的检测
3、低温反应
4、格氏反应
5、知道如何操作和处理空气敏感和湿气敏感产品
6、拥有钌、铑、钯、铱、铂、金、镍、铜、锆等金属化合物的均相催化剂、磷配体、氮配体、氧配体、手性催化剂和手性配体等的合成技术。
生命科学类产品核心技术包括:
1、微量核酸提取技术
2、恒温扩增技术
3、全封闭式靶核酸核酸扩增物快速检测技术
4、SNP/基因突变检测技术
5、染色体单体分离分析技术
6、蛋白表位标记技术
7、磁珠分离技术
分析色谱技术包括:
1、超精细实时在线精馏控制。
2、色谱、光谱和质谱溶剂中超痕量目标杂质去除。
3、无水溶剂分子筛脱水技术。
至今阿拉丁已取得授权的专利共计24项,其中发明专利5项。阿拉丁先后被评为 “上海市奉贤区小巨人企业”、“高新技术企业”,研究开发水平在国内试剂行业处于领先地位。 阿拉丁公司经过长期摸索的QA/QC质量控制制度和程序,通过世界级的ERP系统控制好每个质量节点,阿拉丁的QC质控规范全部参考全球标准制定,任何物质都必须经过定性和定量进行质量把控。
阿拉丁建立了全球标准化的QA/QC质量把控体系,分析测试中心拥有全球最先进的各类仪器,仪器设备投资位列国内仪器设备之首,大型包括X-射线衍射仪(XRD)、红外光谱仪(IR)、液相色谱和气相色谱仪多台(HPLC&GC),电感耦合等离子体质谱仪(ICP),元素分析仪,激光粒度仪,、荧光定量PCR仪和各类滴定仪、折光率检测、各种电泳、比旋光度检测和密度检测等等,以确保阿拉丁的产品质量完全符合和达到国际标准。
原辅料、半成品和成品货物的标签全部采用二维码设计,包含有产品的批次、子批、编码ID或货号。任何一个环节出了质量问题,阿拉丁都可以迅。速溯源并追根问底,强大的世界级的ERP和供应链管理SCM系统确保了各项流程的实施。
阿拉丁质量管理部门,有大批质量控制人才,其中硕士及以上学历的占60%以上,并且所有人员都是从事质量控制岗位1年以上。为阿拉丁产品质量控制提供了充足的人力资源。阿拉丁不定时的派出质管部人员轮流外出学习,以增强自身业务能力,最终为阿拉丁产品质量控制做出更大的贡献。
阿拉丁超过80%的产品的质量标准体系属自己企业建立,实践检验已经达到全球标准。
阿拉丁创立的质量标准体系填补国内空白--阿拉丁所建立的科研用试剂核心技术标准和质量控制平台,打破了我国高纯试剂长期依赖进口的局面,降低了对国外的技术依存,为提高我国高纯试剂质量和市场竞争力发挥了重要作用。
据了解,科研用试剂是科学研究中的必需和关键物质基础,在生命科学、新药创制、新型材料、新能源、食品、环境等重点领域科学研究有广泛需求。过去,我国科研用试剂总体水平与国外先进水平有较大差距,核心科研试剂仍然大量依赖进口,有核心技术标准的试剂产品不超过2000种,而国外试剂公司拥有近十万种的试剂产品,均有完善的试剂质量标准体系。阿拉丁针对国内试剂标准化大量缺失的现状,通过技术攻关和机制、模式的创新,解决了近35000种科研用试剂标准规范的制定,填补了这方面我国标准化的一片空白,这些产品的质量标准都可以在本公司电子商务平台公开下载,为整个试剂行业的发展做出了卓越的贡献。

9. 生产正丙醇的上市公司

与正丙醇相关的上市公司其实比较少,如:巨化股份、三维工程、东华内能源。

1、巨化容股份,该公司主要经营氟化工原料及后续产品、基本化工原料、化肥和农药的生产与销售等;

2、三维工程,该公司主要产品或服务为工程设计及工程总承包;催化剂的生产及销售。主要服务于石油化工、煤化工行业,从事以炼油化工项目为主的工程设计和总承包业务。

3、东华能源,该公司主营液化石油气和丙烯的生产及储存化工品(异丙醇、正丙醇等)。



(9)生产手性催化剂的上市公司扩展阅读:

2020年7月17日,商务部公布对原产于美国的进口正丙醇反倾销调查的初步裁定。商务部初步裁定,原产于美国的进口正丙醇存在倾销,国内正丙醇产业受到了实质损害,而且倾销与实质损害之间存在因果关系,并决定对原产于美国的进口正丙醇实施保证金形式的临时反倾销措施。

自2020年7月18日起,进口经营者在进口上述产品时,应依据裁定所确定的各公司的倾销幅度254.4%—267.4%向中华人民共和国海关提供相应的保证金。

其中面临的主要风险有:国际油价大幅波动的风险、全球疫情防控不及预期的风险、中美贸易争端加剧的风险、化工生产安全的风险。

参考资料来源:网络—巨化股份

10. 哪些上市公司是生产锂电池的

1、赣锋锂业

赣锋锂业公司长期致力于深加工锂产品的研发和生产,综合实力位列国内深加工锂产品领域第一。主要产品包括金属锂(工业级、电池级)、碳酸锂(电池级)、氯化锂(工业级、催化剂级)、丁基锂、氟化锂(工业级、电池级)等二十余种。

多项细分产品市场上处于国内领先地位,其中金属锂、丁基锂、氟化锂2007年、2008年的销量均居国内第一;电池级金属锂和电池级碳酸锂的销量居国内领先行列。公司是国内唯一建立“卤水/含锂回收料-碳酸锂/氯化锂-金属锂-丁基锂/电池级金属锂-锂系合金”全产品链的企业,也是国内锂行业唯一实现全产品链竞争的企业。

2、天齐锂业

天齐锂业是国内最大的锂电新能源核心材料供应商,国内锂行业中技术领先、综合竞争力较强的龙头企业,全球最大的矿石提锂生产商,天齐锂业是一个新能源新材料的科技公司。

3、西部矿业

西部矿业集团有限公司是由原锡铁山矿务局改制而成立的,锡铁山矿务局原址在青海海西大柴旦锡铁山镇。1999年5月,根据探矿情况,锡铁山开采年限有限,新一届领导班子在毛小兵局长的带领下开始全面推行“人事、劳动、工资”制度改革,企业以此为开端逐步向现代股份制企业转变。

4、当升科技

北京当升材料科技股份有限公司,成立于2001年,起源于北京矿冶研究总院的一个课题组,是从事新能源材料研发和生产的高新技术企业,主要从事钴酸锂、多元材料及锰酸锂等小型锂电、动力锂电正极材料的研发、生产和销售,是国内领先的锂离子电池正极材料专业供应商。经过多年的努力,公司于2010年4月成功登陆创业板。

5、国轩高科

国轩高科股份有限公司于1995年01月23日在南通市工商行政管理局登记成立。法定代表人李缜,公司经营范围包括锂离子电池及其材料、电池、电机及整车控制系统的研发等。

(10)生产手性催化剂的上市公司扩展阅读

前景

《规划》出台 有望改变世界锂电池格局

4月18日,国务院讨论通过了《节能与新能源汽车产业发展规划(2012~2020年)》(下称《规划》),明确了以纯电驱动为汽车工业转型的主要战略取向,推广普及非插电式的混合动力汽车,并提出了在2015年纯电动以及混合动力车累计产销量达到50万辆,到2020年超过500万辆的目标。

《规划》的出台,在坊间引发巨大关注。诸多专家认为,此举将促进汽车业进入新一轮发展期,此外,还在无形中为节能与新能源汽车的核心部件动力电池产业勾勒出一个庞大的市场轮廓。

阅读全文

与生产手性催化剂的上市公司相关的资料

热点内容
怎样查新三板股票解禁 浏览:472
新三板5月设独立交易系统 浏览:780
黄岩模具上市公司 浏览:884
微博炒股大v靠谱 浏览:869
股票603118现在价格 浏览:928
乐凯胶片开盘涨停 浏览:867
集合竞价挂涨停版会如何 浏览:193
今日赛轮股票价格 浏览:977
渠道炒股 浏览:67
制氢上市公司龙头股 浏览:422
韩国最贵股票价格排名 浏览:512
上市公司股利分配外文文献 浏览:475
涨停买点指标源码 浏览:51
科创科创板的股票代码 浏览:596
带炒股的手表 浏览:729
新型材料的上市公司 浏览:157
碳纳米管复合材料上市公司 浏览:883
河北有那些银行上市公司 浏览:710
炒股10万本金月入 浏览:204
十全十美炒股战法 浏览:336