『壹』 地质雷达的天线频率,探测深度和分辨率三者之间的关系是什么
脉冲雷达有调制频率和重复频率,调制频率也就是常说的天线频率,一般地说,天线频率越高探测越浅,重复频率越高也越浅。分辨率是调制脉冲越窄越高,但能量也小了探测就近。天线频率高了分辨率也高。也可以说分辨率高了相对就探测近。
『贰』 地质雷达的介绍
地质雷达(Ground Penetrating Radar(GPR))是探测地下物体的地质雷达的简称。
『叁』 地质雷达
3.3.7.1 方法简介
3.3.7.1.1 基本原理
地质雷达也称探地雷达,是利用高频电磁波束在界面上的反射来探测目标物,由发射天线和接收天线组成。发射天线向地下发射高频短脉冲电磁波,接收天线则接收来自地下介质交界面的反射电磁波。由于电磁波向地下传播速度主要受地下介质电性控制,在介质电性发生变化的界面,电磁波会发生反射。通过研究电磁波在介质中的传播速度、介质对电磁波的吸收及介质交界面的反射,并用时间剖面图像表示出地下各分界面的形态,从而推测地下地质体及地层结构的分布规律。
3.3.7.1.2 应用范围及适用条件
地质雷达是一种高分辨率探测技术,可以对浅层地质问题进行详细的地质填图,浅层埋藏物进行无损探测。由于电磁波能量在碳酸盐岩区衰减快,勘探深度较浅主要适用于碳酸盐岩裸露或覆盖层浅的地区,目前广泛用于地基探查、地下空洞、岩溶、破碎带、断层等地质构造探测。
要求发射的电磁波能量必须足够大,探测距离能够达到目标体,并能返回地面被系统接收;目标体阻抗差别足够大,有足够的反射或散射能量为系统所识别;目标体的几何形态必须尽可能了解清楚,正确选用天线中心频率;测区干扰不足以影响目标物的反射信息。
3.3.7.1.3 工作布置原则与观测方法
主测线应垂直地下目标体走向,辅助测线平行目标体走向,可更好地反映目标体形态,测线应尽量通过已有的井位,以利于地层的对比。
目前常用的观测方法有剖面法和宽角法两种。
剖面法:发射天线和接收天线以固定间距沿测线同步移动的一种测量方式。
宽角法:发射天线固定在地面某一点上不动,而接收天线沿测线逐点移动,记录地下各个不同界面反射波的双程走时的测量方式。
3.3.7.1.4 资料整理及成果解释
检查验收合格的原始数据,经滤波及二维偏移归位等处理,经过反射层的拾取,编绘探地雷达图像剖面,最终形成推断成果图等。
由于雷达反射界面是电性界面,与地层分界面并不一致,如相邻地层有相近的波阻抗、同一岩层中的含水带界面、多个薄层的地质界面组合等。同时雷达时间剖面转换为深度剖面的精度,分辨率的限制,旁侧界面反射波的影响等因素,给雷达资料带来很多假象,使雷达剖面解释存在多解性。因此成果解释必须结合地质、钻探资料,根据反射波组的波形与强度特征,通过同相轴的追踪,确定反射波组的地质意义,建立测区地质—地球物理模型,构筑地质—地球物理综合解释剖面。
3.3.7.2 试验情况
本次实验主要选择了表层带富水块段纳堡村地区、天然出露的岩溶水源地皮家寨工区,目的是为了查明地表至30m深度的盖层结构、完整稳定性、水文地质结构、岩溶发育特征及富水性。对裸露型隐伏的岩溶水源地大衣村和万亩果园及覆盖型隐伏的岩溶水源地三家村和大兴堡实验区拟实施钻孔位置也布置了少量地质雷达剖面。共布置剖面94条,总长3.4km,其中纳堡村实测66条剖面,长1635m。
本次试验使用SIR-20型地质雷达,天线类型SIR-100MHZ,扫描时窗250~600ns,工作方法为连续剖面测量。
3.3.7.3 主要成果
纳堡村探测结果,表层结构大致分为两层:第一层为第四系覆盖层,岩性为粘土,厚度在2~6m,时窗为0~100ns,表现为能量强、频率较高,连续性较好的波组特征;第二层为个旧组风化灰岩,厚度8~16m,时窗为50~300ns,表现为能量较弱且变化大、频率较低,连续性差的波组特征;向下则表现为无明显反射或杂乱零星反射的“平静带”波组特征,表明已进入基岩(完整灰岩)层。
图3-18为纳堡小学L20线的测量结果,雷达反射波大致分为三层,第一层时窗0~80ns,为能量强、频率较高的波组特征,深度约5m,反映了第四系覆盖层;第二层时窗80~300ns,为能量弱、变化大、频率较低的波组特征,深度约5~16m,反映了风化灰岩层;第三层时窗300ns以上,为无明显反射或杂乱零星的波组特征,推断已进入完整的灰岩层。在剖面10~15m处,时窗范围160~200ns,深度约9~12m范围内,地质雷达记录出现明显的强反射波异常,推断解释为岩溶裂隙含水层。经施工的浅钻验证,覆盖层厚5.15m,5.15~15m岩溶发育,以溶隙、溶洞、溶孔为主,为主要含水层段,涌水量36m3/d,15m以下岩溶不发育,富水性弱,与推断结果吻合。
图3-18 泸西小江流域纳堡村纳堡小学L20线地质雷达曲线
纳堡村宾珍红商店地质雷达测量未发现异常,反射波为明显的两层,顶部覆盖层为高能量波特征,时窗0~100ns,厚度约6m,下部为基岩的平静弱反射波特征,经ZK2浅钻验证,基岩埋深6.7m,孔深30.3m未见水,探测结果与验证结果一致。
纳堡村实验点共圈出8处地质雷达异常,经钻孔验证4处,除1处水量小外,3处表层岩溶水较丰富。
图3-19为皮家寨大泉旁实测地质雷达剖面,大致可分为两层,第一层时窗0~60ns,波组连续稳定,反映出第四系覆盖层厚度为1~3m;时窗60~300ns,地质雷达曲线显示为杂乱反射、振幅变强、频率变低的异常现象,推断该区地下3~16m之间的个旧组灰岩中岩溶裂隙较为发育,局部存在较大充填或未充填的溶洞,如L73线7m、28m、55m处推断为岩溶含水区,与高密度电法38线100~110点的低阻异常对应。经钻孔验证,溶洞,溶孔发育,与推断结果吻合。
图3-19 泸西小江流域皮家寨L73线地质雷达曲线
3.3.7.4 结论
地质雷达反射波组特征:岩溶裂隙含水层为明显的强反射波异常;第四系覆盖层为能量强、频率较高,连续性较好的反射波;风化灰岩层为能量较弱且变化大、频率较低,连续性差的反射波;完整灰岩层为无明显反射或杂乱零星反射的“平静带”特征。
地质雷达在探测深度0~30m范围内,分辨率较高,对表层岩溶裂隙发育带探测效果较好,划分的覆盖层厚度较接近,误差均小于1m。推断的岩溶发育异常带,准确度很高,是表层岩溶找水的有效方法之一。
『肆』 地质雷达探测与声波探测有哪些异同点
我们公司代理俄罗斯OKO-2地质雷达和美国GSSI,SIR-20\SIR300地质雷达。说下雷达的吧
地质雷达是电磁波,通过地下无知本身的反射来测试地质情况。
北京西尼德克仪器设备有限公司
『伍』 探地雷达(GPR)
探地雷达是一种既古老而又年轻的物探技术,90年代以后才在我国得到较多的应用。
早在90多年以前,国外就曾利用该技术作过不可见目标的探测试验,但是直到70年代美国地球物理勘查设备公司(GSSI)才第一次研制成功SIR探地雷达系列,并取得一批实用成果。由于GPR技术具有其他物探方法无与伦比的浅层高分辨率的特点,20多年来该项技术已取得长足的进展。仪器不断更新换代,资料采集、处理、显示和解释方法不断革新,应用领域不断扩大。目前,GPR技术已成为地质调查的一种重要技术。
一、基本原理简介
GPR技术是一种高频(10~1000MHz)电磁技术。但是,它的工作方法却与地震相似。通过GPR天线向地质体内发射一短脉冲信号。信号在地质体内的传播主要取决于地质材料的电特性。当这种电特性发生变化时,GPR信号将发生反射、折射等现象。利用放置在相应位置上的接受器将信号接受下来,经放大、数字化处理和显示,为解释提供必要的数据和图像。除人们熟悉的反射工作方式外,GPR还有多种工作方式,如共中心点、广角反射、折射和透射等。各种方式都可以用于探测信号在地下的传播速度和能量衰减。影响GPR探测深度的因素主要有雷达系统的本身性能(如频率、能量等),被探测材料的物理特性。
二、仪器的发展
1.国外的主要进展
(1)70年代中期,GSSI公司的SIR探地雷达系列代表了首批可在商业上使用的仪器系统。日本的OYO公司推出了GeoRadar系列;微波公司推出了MK探地雷达系列。80年代中期,A-Cubed公司与加拿大地调所(GSC)合作,推出了高性能的Pulse EKKO数字雷达;瑞典地质公司及日本公司等还研制了可用于跨孔测量的孔中透视雷达系列。
(2)90年代以后,GPR仪器又有了一些新发展,相继推出了多态雷达系统、层析雷达系统。三维雷达技术具有明显提高解决浅层地质问题的能力,但却因耗时费力得不到普遍的应用。为此,Frank Lehman等研制出全自动的组合地质雷达激光经纬仪系统。利用该系统,一人可在2h内完成25m×25m范围的三维数据采集。三个方向上的定位精度为±2.5cm。数据处理、成图可在1h内完成,比传统方法的效率提高5~10倍。
(3)仪器轻便、结实、通用是仪器厂商和用户追求的目标之一。为实现该目标,1998和1999年加拿大的SSI公司先后推出了NogGin250、500型GPR仪器,将该公司生产的Pulse EKKO系统的全部雷达功能压缩在一个简单的NogGin轻便仪器箱内。但该仪器不仅是对原仪器进行简单的压缩,而是从基本设计原理上进行了改进。将NogGin与该公司研制的软件“SPIView”配合使用,用户则可以通过简单的操作在无限卷图上查看数据图像。
2.国内的进展
90年代我国引进了一批地质雷达仪器并将它们用于工程和灾害地质调查。近年来,国内地质雷达仪器的研制也取得了较大的进展。煤炭科学院西安分院物探所研制成功了适用于矿山防爆要求的DVL防爆型矿井雷达系列。原电子工业部第二十二研究所相继研究成功了LT-1,2,3型探地雷达。航天工业总公司爱迪尔国际探测技术公司推出了商品化的探地雷达系列产品。国内外生产的多种类型的GPR仪器,一般都具有较好的性能,可供不同探测目标选用。
三、资料采集、处理和显示技术的进展
(1)90年代初,GPR资料由单点采集过渡到连续采集,使GPR技术的应用向前迈进了一大步。
(2)地震资料处理的方式基本适用于GPR资料的处理。为了更好地将石油地震的先进技术引进到GPR领域,一些公司之间开展了合作。比如,1990年后SSI公司与地震图像软件公司(SISL)达成协议,SSI公司按地震资料输出格式设计Pulse EKKO探地雷达系统,将SISL公司开发的地震资料处理软件用于GPR资料的处理。这些软件包括各类滤波、反褶积及资料显示等。
(3)近几年来,国内外专家对各类模拟方法作了研究,如How-Wei Chen等利用时间域交叉网格有限差分数值法,在二维介质内研究、试验、补充了数值探地雷达波传播的模拟。出现了一些利用GPR信号能量衰减层析成像的方法,如应用频率漂移法的电磁波衰减层析成像法、利用形心频率下移的雷达衰减成像方法等。
(4)据SSI公司1998年底披露,该公司即将发行改进型的软件-EKKO三维2型软件。采用2型三维软件,用户可以在方便的条件下试验下述不同软件的组合处理,以便提高数据的立体特征。该三维软件包括去频率颤动、噪声滤波、背景清除、包络线和偏移。在资料显示方面,有的学者提出了将石油工业的四维技术用于时空域内采集的GPR资料,这样就有可能制成流体(如污染物羽状流)在地下传播的电影图像。
(5)透射法取得的资料必须经过处理才能显示成解释所需的资料。SSI公司于1997年开发出可用于将GPR透射资料变换成可用于解释图像的软件。实施步骤包括:原始资料编辑和归类、采集波至、利用美国矿业局的地震层析软件对资料进行层析成像处理,绘制速度、衰减及波散图件以及图像处理等。
(6)针对当前GPR技术的应用研究中,只侧重探测能力试验和数字模拟研究而对GPR资料解释研究不够的现状,雷林源提出了与GPR资料解释工作有关的基本理论和方法以及一些基本问题的求解。提出的基本问题包括电磁波在地层中传播的波阻抗;地层分界面上电磁波场强的反射与透射系数;地层中电磁波速度和反射波的相位以及GPR探测深度等。
四、应用及应用研究实例
GPR技术经过多年的发展,证明具有多方面的用途。国内刊物对一些普通的应用已给予了较多的介绍。这些应用包括:在水文地质方面可以用于浅部地下环境调查,土壤-基岩面探测,基岩节理、裂隙和层理的确定;在工程地质勘察方面可用于调查地下埋藏物,隧道、岩溶、建筑地基评价,道路、桥梁、水坝探测和质量无损检测;在灾害地质勘察方面可以用于滑坡、隐伏洞穴的探测以及考古方面的用途等。本文谨就GPR在地质环境污染、农业、军事等方面的应用实例作一简单的介绍。
1.调查地质环境污染
(1)一座建立在石灰岩地区的硝化纤维厂,由于污水的泄漏导致硝化纤维对地质环境的污染。为了探测地表至潜水面(约60m)岩溶结构可能捕获的硝化纤维,在18个30米深和7个50m深的钻孔中作了井中雷达探测。对收集到的资料作常规处理后,采用惠更斯-基尔霍夫(HK)叠加法绘制出三维雷达图。从深度为10m的重建图像上可以看出几个受硝化纤维污染的位置。在后来的开挖中,证示了GPR的探测成果。
(2)探测碳氢污染物试验。多年来的野外工作和试验已证明GPR具有调查地质环境污染的能力。国外专家在1m×0.4m×0.5m箱体中作了精心的试验,试图再一次验证GPR探测污染的能力,并用相关模型说明雷达响应与一些水文参数间的关系。通过试验和GPR数据的处理和解释得出结论:在污染物达到饱和时,利用GPR探不到潜水面;在相邻未受污染区可探到潜水面时,GPR可用于监测潜水面上的污染物;小型实验有助于探测或验证砂质土壤的水文地质参数,如毛细作用水头、污染物羽状流的传播速度;GPR能成功探测石油污染。
2.农业方面的应用
(1)沙漠中的沙丘和沙席是雨水良好的储集层,有可能成为灌溉的水源。利用GPR在沙特东部沙漠区作了探测。探测结果划出了圆顶形沙丘上部与其下部盐层间的界面、沙丘内的交错层理及潮湿带;探测还指出,圆顶沙丘可能是新月形沙丘的演变结果。在另一个沙漠场地的调查成果指出了沙丘内水流传播的两条可能途径。
(2)探测土壤含水量。自然土壤中的含水量是影响介电常数变化的主要因素。A.Chanzy等利用地面和空中两种方式的GPR试验,证明GPR测量数据与土壤含水量间具有很强的联系。可以用GPR技术探测土壤中的含水量。
(3)美国正在形成现代化的农业生产,GPR技术被用于探测特殊农业场地的土层、上层滞水、脆盘土、水文优先流径和压实土壤等与现代化农业有关的土壤信息。
3.探测古灰岩洞
前几年已有一些介绍利用GPR技术探测一般洞穴的文章,但未见到探测古灰岩洞及其塌陷特征的报道。为了配合开发美国得克萨斯州老灰岩洞的地下水,对该区的溶洞系统作了详细的研究。GPR资料显示了未扰动的主岩、过渡构造(如张性裂隙、古溶洞壁及洞顶等)和各种规格的角砾岩的分布。本探测成果证明,GPR技术是调查与近表灰岩系统及塌陷古溶洞有关特征的有效方法。
4.南极永冻场地安全检查
在一个南极考查计划利用的场地内,发现地下0.3~0.5m位置的冰内有一些融水坑(据2000年初中央电视台报道,我国南极科考队也发现了与此相似的冰水湖),它们将给场地的利用带来负面的影响。为此,利用GPR对场地进行了调查。通过对记录的绕射波结构及其他信息的分析,在3.5m左右深度发现一些有40m长、含分散水的冰层带,但含水量较少。另外,根据GPR资料显示,咸水层以上各层次的振幅没出现异常,说明场地下不可能存在其他融水坑。后来经重车和飞行器作了大量荷载试验,场地没出现任何与冰密度有关的事故。由此可见,GPR可作为南极冰盖场地安全检查的工具。
5.军事用途
瑞士科学家正在研制一种可用于排除地雷的GPR探测系统。该系统以探地雷达和用于成像的金属探测器为基础。探测器可以区别那些与GPR信号相似而金属含量不同的目标(如同样大小的地雷和石头);而GPR则可以将探测器给出的相似结果(如地雷和金属垃圾)区分开来。另外,据SSI公司1999年10月披露,利用GPR散射能量平面图可以发现塑料性地雷。
6.区域水文地质调查
雷达相图被定义为某一特定地层产生的雷达反射图像特征的总和,指的是雷达剖面资料上肉眼可见的反射波的不同组合形式。雷达资料观测中,地质体的构造和结构特征会影响雷达响应并产生特征效应。这些特征效应被称为雷达相图元素。自1990年以来,荷兰TNO应用地学研究所在荷兰30多个适合于GPR调查试验的点上作了测量,用于评价GPR对不同水文地质目标成像和描述目标特征的可能性。探查成果揭示出荷兰不同沉积环境下雷达相图元素的特征,将具有代表性的反射图像编成简要的“雷达相图集”,该相图集对确定地下水文地质层序的位置有益。据悉,美国也利用GPR对多个州做了类似的调查。
『陆』 地质雷达最深探测可以达到多少啊
理论值24米,实际会有波动,国内一般在20米,特殊情况可达30米
『柒』 地质雷达探点测测间距多少米
1) 手持式雷达测速仪的特点是价格便宜,灵活性强,可以移动操作,所以手持式雷达测速器也是
警察最常用的设备。根据发射功率的不同有效测速距离在300-800米之间,但是由于手持式雷达采用
的是模糊瞄准,所以根据道路车辆状况的不同,警察并不会在很远的距离测速,在高速路通常会在
150-300米范围测速,在城际公路、国道的测速范围在100-200米左右。如果警察没有测速不会产生
雷达信号,反测速雷达也不会报警。
2) 车载式雷达测速抓拍系统,可以全天候工作,操作方便工作更舒适,越来越广泛地装备给警察
部队和高速路管理机关。为了提高抓拍的准确度,雷达会在雷达的前方100米左右形成警戒区,对于
超速的驾驶员拍照。所以使用反测速雷达的用户要注意,当行使在空旷地带接受到报警信号时(如
国道、环线和高速路),90%是雷达测速。
★注意:在标有 “进入雷达测速区” 时,在这路段中不要超速,否则等车到摄像机前就算减速也
会被拍照的。
有些人安装一些日本的产品(卫星眼)能测出该路段限速多少。
『捌』 在土木工程检测中,地址雷达探测的市场价一般是多少呢,多少钱一次。
大哥是地质雷达吧, 分情况:市政管线按长度(米)收费;房屋检测什么的按次收费。现在地质雷达(探地雷达)没有收费标准。
『玖』 哪有地质雷达或地质探测仪出租的,求公司名称和电话
做哪方面?寻宝还是工程?