❶ 古代各朝代历法有那些方面
朝代 历法名称 制定年 (公元) 行用年 (公元) 创制者 刊载文献 春秋战国 黄帝历 颛顼历 夏历 殷历 周历 鲁历 战国时期 唯有颛顼历一直用到公元前104年汉武帝改历为止 《汉书·律历志》 《开元占经》 汉 太初历 (三统历) 前104 前104~后84 邓平、落下闳 《汉书·律历志》 四分历 乾象历 85 206 85~263 223~280 李梵、编欣 刘 洪 《后汉书·律历志》 《晋书·律历志》 三 国 黄初历 太和历 220 227 未 用 未 用 韩 翊 高堂隆 景初历(太始历、永初历) 237 237~451 杨 伟 《晋书·律历志》 《宋书·历志》 晋 正历 乾度历 永和历 274 277 352 未 用 未 用 未 用 刘 智 李修、卜显依 王朔之 已失传 三纪甲子 元 历 384 384~517 姜 岌 《晋书·律历志》 元始历 412 412~439 452~522 赵 匪欠 南 北 朝 五寅元历 440 未 用 崔 浩 《北史·崔浩传》 元嘉历 (建元历) 443 445~509 何承天 《宋书·律历志》 大明历 景明历 神龟历 正光历 兴和历 大同历 九宫行碁历 天保历 灵宪历 天和历 孝孙历 甲寅元历 孟宾历 大象历 463 500 518 521 540 544 547 550 566 576 576 576 579 510~589 未 用 未 用 523~565 540~550 未 用 未 用 551~577 566~578 未 用 未 用 未 用 579~583 祖冲之 公孙崇 崔 光 李业兴 李业兴 虞 邝 李业兴 宋景业 信都芳 甄 鸾 刘孝孙 董峻、郑元伟 张孟宾 马 显 (同上) 《魏书·律历志》 (同上) (同上) (同上) 《隋书·律历志》 《北齐书·方技传》 《隋书·律历志》 (同上) (同上) 隋 开皇历 皇极历 大业历 584 604 597 584~596 未 用 597~618 张 宾 刘 焯 张胄玄 《隋书·律历志》 (同上) (同上) 唐 戊寅元历 619 619~664 傅仁均、崔善为 《旧唐书·历志》 《新唐书·历志》 麟德历 经纬历 光宅历 神龙历 九执历 665 698 705 718 665~728 未 用 未 用 未 用 未 用 李淳风 瞿昙罗 (同上) 南宫说 瞿昙悉达 (同上) 《旧唐书·历志》 《开元占经》 大衍历 728 729~761 一 行 《旧唐书·历志》 《新唐书·历志》 至德历 五纪历 758 762 758~762 762~783 韩 颖 郭献之 《新唐书·历志》 《新唐书·历志》 符天历 780~783 行于民间, 直至宋代 曹士蒍 《新五代史·司天考》 正元历 观象历 宣明历 崇玄历 783 807 822 893 784~806 807~821 822~892 893~938 徐承嗣 徐 昂 徐 昂 边 冈 《新唐书·历志考》 《新唐书·历志考》 (同上) 五 代 十 国 永昌历 正象历 909 912 909~911 912~925 胡秀林 (同上) 《通鉴目录》 (同上) 调元历 937 939~943 947~994 马重绩 中正历 齐政历 明玄历 940 950 952 940~950 950~975 未 用 陈成勋 王处讷 钦天历 956 956~963 王 朴 《旧五代史·历志》 《新五代史·司天考》 宋 辽 金 应天历 乾元历 963 981 964~982 983~1000 王处讷 吴昭素 《宋史·律历志》 (同上) 大明历 994 995~1125 1123~1136 贾 俊 《辽史·历象志》错录祖冲之大明历 至道历 仪天历 乾兴历 995 1001 1022 未 用 1001~1023 未 用 王 睿 史 序 张 奎 《宋史·律历志》 崇天历 1024 1024~1064 1068~1074 宋行古 《宋史·律历志》 明天历 奉元历 十二气历 观天历 占天历 1064 1074 1086 1092 1103 1065~1067 1075~1093 未 用 1094~1102 1103~1105 周 琮 卫 朴 沈 括 皇居卿 姚舜辅 (同上) 李锐补修《奉元术》 《梦溪笔谈》 李锐补修《占天术》 纪元历 1106 1106~1127 1133~1135 (同上) 《宋史·律历志》 大明历 统元历 乾道历 淳熙历 1127 1135 1167 1176 1137~1181 1136~1167 1168~1176 1177~1190 杨 级 陈德一 刘孝荣 (同上) 《宋史·律历志》 (同上) (同上) 重 修 大明历 1181 1181~1234 1215~1280 赵知微 《金史·历志》 乙未元历 五星再聚历 会元历 统天历 开禧历 西征庚午元历 淳祐历 会天历 1181 1187 1191 1199 1207 1220 1250 1253 未 用 未 用 1191~1198 1199~1207 1208~1251 未 用 1252 1253~1270 耶律履 石 万 刘孝荣 杨忠辅 鲍瀚之 耶律楚材 李德卿 谭 玉 (同上) 《宋史·律历志》 (同上) (同上) 《元史·历志》 万年历 1267 行于几个少数民族之间 札马鲁古 成天历 本天历 1271 1277 1271~1276 1277~1279 陈 鼎 邓光荐 《宋史·律历志》 元 授时历 (大统历) 1280 1280~1644 郭守敬 《元史·历志》 明 圣寿万年历 1554 未 用 朱载堉 《乐律全书》 黄钟历 1581 未 用 朱载堉 《古今图书集 成历法典》 新法历 (时宪历) 1634 1645~1723 徐光启等 《崇祯新法》 《历象考成》 清 晓庵历 癸卯元历 1663 1742 未 用 1742~1911 王锡阐 戴进贤 《晓庵新法》 《历象考成后编》 太 平 天 国 天 历 1852 1852~1864 洪仁玕 《乙未九年改历诏旨》 公历(即格 里高利历) 1582 1912至今
❷ 李卿中间加个什么字好呢男孩想取个名字加什么字好
李勋卿 李裕卿 李义卿 李琳卿 李潇卿 李厚卿 李虎卿 李礼卿 李善卿 李仕卿 李富卿 李镇卿 李运卿 李孝卿 李昱卿 李心卿 李朋卿 李光卿 李灵卿 李长卿 李道卿 李浚卿 李昭卿 李飞卿 李力卿 李知卿 李晓卿 李有卿 李宁卿 李波卿 李朗卿 李钦卿 李桐卿 李仁卿 李予卿 李崇卿 李传卿 李积卿 李屹卿 李佑卿 李孟卿 李以卿 李丁卿 李琛卿 李忻卿 李秀卿 李声卿 李添卿 李汉卿 李思卿 李津卿 李利卿 李鹤卿 李懿卿 李彦卿 李震卿 李远卿 李学卿 李烁卿 李水卿 李强卿 李琪卿 李承卿 李劲卿 李凌卿 李鑫卿 李铭卿 李恒卿 李亮卿 李久卿 李彤卿 李栩卿 李亦卿 李济卿 李炜卿 李禹卿 李延卿 李如卿 李骐卿 李世卿 李鸣卿 李高卿 李岚卿 李宗卿 李洛卿 李易卿 李德卿 李士卿 李修卿 李秋卿 李绍卿 李楚卿 李相卿 李森卿 李友卿 李雄卿 李沐卿 李泊卿 李亚卿 李峥卿 李月卿 李和卿 李恺卿 李玉卿 李凡卿 李雪卿 李蔚卿 李为卿 李雅卿 李宜卿 李人卿 李胤卿 李焕卿 李悦卿 李小卿 李晨卿 李望卿 李来卿 李城卿
❸ 中国古代历法的演变过程
中国古代历法演变大致又可以分为五个时期,
一. 古历时期:汉武帝太初元年以前所采用的历法;
二. 中法时期:从汉太初元年以后,到清代初期改历为止。这期间制订历法者有七十余家,均 有成文载于二十四史的《历志》或《律历志》中。
三. 中西合法时期:从清代期苏会传教士汤若望上呈《新法历书》到辛亥革命为止;
四. 公历时期:辛亥革命之后,于1912年孙中山先生宣布采用格里高历(即公历,又称阳 历)
五. 阴阳历结合期 : 中华人民共和国成立后,在采用公历的同时,考虑到人们生产、生活的实际需要,还颁发中国传统的农历。
历法,简单说就是根据天象变化的自然规律,计量较长的时间间隔,判断气候的变化,预示季节来临的法则。中国古代天文学史,在一定意义上来说,就是一部历法改革史。 纵观中国古代历法,所包含的内容十分丰富,大致说来包括推算朔望、二十四节气、安臵闰月以及日月食和行星位臵的计算等。
❹ 李德卿这个名字好吗
好名字,李德卿
李德卿测试结果是:
天地开泰万事成,身体康安亦富荣,否泰名誉兼享福,一生无忧乐绵长。繁荣发达,信用得固,万人仰望,可获成功。万物开泰,最大吉祥的暗示,但常人恐不当。天地开端﹐万物创始之象﹐威望﹑长寿之运格﹐有独立﹑单行﹑健全﹑发达﹑富贵﹑名誉﹑幸福﹑长寿等暗示力﹐宜静不宜动﹐静可得良机﹐如旭日东升﹐以温和步骤﹐可获得成功﹐事半功倍﹐但对常人恐有过好﹐不堪当之之数也。(吉)天地开端创始之象,有始收,富贵,长寿,乃为大吉之数,但宜静不宜动,静可得良机,如旭日东升,以温和步伐,可获大成功,健康,荣华,名誉,终生幸福之命运也…
❺ 阳历和阴历是谁发明的
历法 是用年、月、日等时间单位计算时间的方法。 主要分为阳历、阴历和阴阳历三种。阳历亦即太阳历,其历年为一个回归年,现时国际通用的公历(格里历)即为太阳历的一种,亦简称为阳历;阴历亦称月亮历,或称太阴历,其历月是一个朔望月,历年为12个朔望月,其大月30天,小月29天,伊斯兰历即为阴历的一种;阴阳历的平均历年为一个回归年,历月为朔望月,因为12个朔望月与回归年相差太大,所以阴阳历中设置闰月,因此这种历法与月相相符,也与地球绕太阳周期运动相符合。中国的农历就是阴阳历的一种。 中国古代的历法: 朝代 历名 编者 使用年份 西汉 太初历/三统历 邓平 前104年-84年 东汉 四分历 编? 85年-205年 乾象历 刘洪 206年-236年 曹魏 景初历 杨伟 237年-442年 刘宋 元嘉历 何承天 443年-462年 大明历 祖冲之 463年-520年 北魏 正光历 李业兴 521年-539年 兴和历 李业兴 540年-549年 北齐 天保历 宋景业 550年-565年 后周 天和历 甄鸾 556年-578年 大象历 冯显 579年-583年 隋 开皇历 张宾 584年-607年 大业历 张冑玄 608年-618年 唐 戊寅历 傅仁钧 619年-665年 麟德历 李淳风 666年-728年 大衍历 一行 728年-761年 五纪历 郭献之 762年-784年 贞元历 徐承嗣 785年-821年 宣明历 徐昂 822年-892年 崇玄历 边冈 893年-955年 五代 钦天历 王朴 956年-959年 北宋 应天历 王处讷 960年-980年 乾元历 吴昭素 981年-1000年 仪天历 史序 1001年-1023年 崇天历 宋行古 1024年-1063年 明天历 周琮 1064年-1073年 奉元历 卫朴 1074年-1091年 观天历 皇后卿 1092年-1102年 占天历 姚舜辅 1103年-1105年 纪元历 姚舜辅 1106年-1126年 金 大明历 杨级 1127年-1179年 重修大明历 赵知征 1180年-1280年 南宋 统元历 陈德一 1135年-1160年 乾道历 刘孝荣 1167年-1175年 淳熙历 刘孝荣 1191年-1198年 会元历 刘孝荣 1191年-1198年 统天历 杨忠辅 1199年-1206年 开禧历 包翰元 1207年-1250年 淳祐历 李德卿 1251年-1252年 会天历 谭玉 1253年-1270年 成天历 陈鼎 1271年-1274年 皇极历 刘焯 605年-617年 乙未历 耶律履 1180年- 授时历 是中国古代曾经使用过的一种历法,为元代郭守敬、王恂、许衡等人创制,因古语“敬授人时”而得名,从元朝至元十八年1281年开始实行。明朝所颁行的 大统历 基本上就是授时历,总共实行了364年。 授时历应用弧矢割圆术来处理黄经和赤经、赤纬之间的换算,并用招差法推算太阳、月球和行星的运行度数。授时历的采用统天历的长度,365.2425日为一年,29.530593日为一月,与现在所使用的公历的数值完全相同。推算节气的方法是将一年的1/24作为一气,以没有中气的月份为闰月。它正式废除了古代的上元积年,而截取近世任意一年为历元,所定的数据全凭实测,打破古代制历的习惯,是中国历法上的大变革之一。 儒略历 ,是格里历的前身,由罗马共和国独裁官儒略·恺撒采纳埃及亚历山大的希腊数学家兼天文学家索西琴尼计算的历法,在公元前46年1月1日起执行,取代旧罗马历法的一种历法。一年设12个月,大小月交替,四年一闰,平年365日,闰年于二月底增加一闰日,年平均长度为365.25日。由于累积误差随着时间越来越大,1582年后被教皇格里高利十三世改善,变为格里历,即沿用至今的西历。 现行 公历 即 格里历 ,亦有译为 额我略历 、 格列高利历 、 格里高利历 ,是由意大利医生兼哲学家里利乌斯(Aloysius Lilius)改革儒略历制定的历法,由教皇格列高利十三世在1582年颁行。格里历是阳历的一种,于1912年开始在中国正式采用,取代传统使用的中国历法夏历(农历),而中国传统历法是一种阴阳历,因而格里历在中文中又称 阳历 、 西历 、 新历 。格里历与儒略历一样,格里历也是每四年在2月底置一闰日,但格里历特别规定,除非能被400整除,所有的世纪年(能被100整除)都不设闰日;如此,每四百年,格里历仅有97个闰年,比儒略历减少3个闰年。格里历的历年平均长度为365.2425日,接近平均回归年的365.24219日,即约每3300年误差一日,也更接近春分点回归年的365.24237日,即约每8000年误差一日;而儒略历的历年为365.25日,约每128年就误差一日。到1582年时,儒略历的春分日(3月21日)与地球公转到春分点的实际时间已相差10天。因此,格里历开始实行时,同时规定,原先儒略历1582年10月4日星期四的次日,为格里历1582年10月15日星期五,即有10天被删除,但原有星期的周期保持不变。格里历的纪年沿用儒略历,自传统的耶稣诞生年开始,称为“公元”,亦称“西元”。
❻ 李锐在数学方面有什么成果
李锐(1769~1817)是中国古代数学家,又名向,字尚之,号四香,江苏元和县(今属苏州市)人。
少从名师
李锐先世居河南,祖父名横,父名章培。李章培系乾隆十七年(1752)进士,曾任河南伊阳(今汝阳)知县,后调兵部主事。李锐生于1769年1月15日,“幼开敏,有过人之资。从书塾中捡得《算法统宗》,心通其义,遂为九章八线之学。”
1788年,李锐为元和县生员。次年钱大昕来主持紫阳书院,李锐就此受业其门下。1791年,李锐从紫阳书院肄业,开始向钱大昕学习天文和数学知识。钱氏“始教以三角、八线、小轮、椭圆诸法,复引而进于古”。钱大昕“日以翻阅群书校仇为事,遇有疑义辄与锐商榷”。例如撰成《三统术衍铃》之后,就请李锐算校并作跋,可见钱氏对这位弟子的学问相当满意。这段学徒生涯,使李锐不但学到了知识,而且熟悉了乾嘉学派大师的治学方法,对此有人记道:“受业于钱辛楣宫詹(指大听)为九数学,宫詹诲之曰:‘凡为弟子者,不胜其师,不为贤弟子,吾友段若鹰(即玉裁)之于戴东原(即震)是矣,子其勉之。’先生(即李锐)于是闲门沉思五年,尽通畴人家言。”
由于钱大昕的介绍,李锐开始与比他年长6岁的焦循通信。1790年,焦循以所著《群经宫室图》二部寄钱大昕,后者复函称“已分一部致李生尚之,并将尊札付其阅看,伊亦深佩服,以不得握手为恨。”李锐也给焦循去了一信内容主要讨论行星运动问题。
幕宾生涯
1795年,阮元出任浙江学政,开始筹划编纂《畴人传》。不久李锐被邀至杭州,实际上成为这一中国历史上第一部天文、数学家传记的主笔。在此期间,他常往来于苏、杭之间,得以广泛接触江南各藏书名家所收珍本秘籍,并有可能获读文澜阁四库全书中的传抄本。在此基础上,李锐对中国古代数学进行了认真的研究,他的工作与乾嘉学派对古代经典的广泛整理是相一致的。先后经他整理过的中国古代数学名著有李冶的《测圆海镜》和《益古演段》、王孝通的《缉古算术》、秦九韶的《数书九章》,及《九章算术》等。在天文学方面,李锐相继对三绝、四分、乾象、奉元、占天、淳佑、会天、大明、大统等历法进行了疏解。并先后完成《三统术注》《四分术注》等五部书稿。在经学方面,他曾协助阮元校勘《周易》《谷梁》及《孟子》,其成果被载入阮元编的《十三经注疏》之中。他又自撰《周易虞氏略例》《召浩曰名考》这样的经学作品。
1798年,李锐完成了《弧矢算术细草》一书。1799年在读《宋书?律历志》时、对其中用棕转述之何承天调日法有所悟,撰成《日法朔余强弱考》一书。同年《畴人传》编竣。在此期间,李锐与焦循同居阮元节署之内。朝夕相处,“共论经史,穷天人消息之理。”大约此时,李锐通过焦循了解到汪莱的工作;汪、李初次见面则在1800年。
汪莱于1801年授馆扬州,同年撰成《衡斋算学》第五册,议论秦九韶,李冶开方之“可知”与“不可知”,即数字方程是否也有一个正根。稿成后汪氏曾分送张敦仁和焦循二人求正、焦循逐将汪莱的书稿出示给李锐。李锐看毕“深叹为精善,复以两日之力作开方三例”。这是1862年9月5日的事。当时李锐丧妻不久、又逢失子,独自居住于西湖边之孤山附近,心境十分凄凉。他在为汪莱所作的跋文中说:“是卷穷幽极微,真算氏之最也”。随后给出的“三例”则是他研究方程理论的开篇之作。
1805年,李锐应扬州太守张敦仁之邀前往入幕。此时在场州的数学家还有焦循、汪莱、凌廷堪、沈钦裴等人,一时风云际会,尤以李、汪、焦(一说李、凌、焦)三人被誉为“谈天三友”。张敦仁先后撰写《缉古算经细草》,《求--算术》、《开方补记》等书,都得到李锐的鼎力相助。他觅得南宋版《九章算术》(前五章)、《孙子算经》、《张丘建算经》之后,都请李锐算校整理。大约同时,汪莱完成了《衡斋算学》第七册,把方程论的研究又向前推进了一大步。
1806年,李锐回到苏州。这一年他相继撰成《勾股算术细草》、《磐折说》、《戈戟考》等作品,又为张敦仁复校《求——算术》。1808年写成《方程新术草》,书成后即寄给北京的李潢一部抄本。当时李潢正在从事《九章算术》的研究,他后来复函李锐,对此书及两年前经由张敦仁送来的《勾股算书细草》给予很高的评价。李锐与李潢,也被人并称为“南北二李”。
李锐生平虽曾多次参加科举考试,但是均未获成功。1801年,李锐从张敦仁在南昌的府邸出发,前往北京参加他的最后一次考试。这次顺天府的乡试又以失败告终,但他得以与李潢这位神交已久的学术知己聚首。在京期间,他们曾频繁往来,主要讨论《九章算术》中的问题。
李锐一生对中算古籍十分珍视,除了以上提到曾多部古算书校释外,又于1800年亲自购得梅文鼎手录之明清之际数学珍本《西镜录》;此书后由焦循另抄一册,得以流传至今。在北京滞留期间,他又从李潢处读到阮元录自《永乐大典》的多部算书。1814年,李锐得到一部散乱的《杨辉算法》,遂据文义重新排列整齐。1816年,他从张敦仁处获阅阮元早先访得并呈入四库的《四元玉鉴》,开始动手整理,可惜因体力不支未能卒业,以至阮元叹道:“惜乎李君细草未成,遂无能读是书矣。”
贫病相伴
李锐虽然长年奔走于达官显贵之间,他的家庭生活却是十分清苦的。在他留下的日记中,经常可以看到“受某某银若干”的记载;有一则日记还提到李潢托请张敦仁“少分清俸,以瞻其家,俾得悉心、著书。”李锐也经常以自己的精神劳动来回报他的导师或保护人,钱大昕、张敦仁、阮元、李潢等人都曾采用过他的研究成果,难怪有人说他“凡有诘者”,“悉详告无隐”。李锐嗜书如命。为此不得不节衣缩食。有时实在买不起。他就靠借书和抄书来获得所需的资料。尤为可悲的是、为了传宗延嗣,他在发妻龚氏及爱子天亡之后又相继二次娶妻,直到临终始得一子。过度的工作量和沉重的家庭负担无疑加剧了他生活的贫困,也损害了他的健康。
1814年,李锐已患重病,此时他开始向弟子黎应南讲授开方与解方程的理论,断断续续地讲了三年,其讲稿就是后来的《开方说》。1817年夏,李锐病情恶化,临终前嘱托黎应南务必将尚未定稿的《开方说》下卷写好。1817年8月12日,正值创造盛年的李锐咯血身亡。时年仅48岁。
李锐去世后,黎应南“谨遵先生遗命,依法推衍”。于1819年将《方程论》全部完成。
李锐的科学著作,主要的都被收集在《李氏遗书》之中。该书初刊于嘉庆年间,共11种18卷,其子目为:《召浩曰名考》、《三统术注》、《四分术注》、《乾象术注》、《奉元术注》、《占天术注》、《日法朔余强弱考》、《方程新术革》、《勾股算术细草》、《弧矢算术细草》、《开方说》。此外,他还著有《测圆海镜细草》、《缉古算经细草》、《补宋金六家术》;《回回历元考》等书。
李锐在其学术活动中集继承与创造于一身。他对数学的贡献,主要有以下四个方面:
编纂《畴人传》
《畴人传》是一部以历法沿革为主线,以人物为核心的大型天文、数学家传记,共收录自远古至清初的中外历算家316人。每一人物均由“传”、“论”两部分组成:“传”主要是原始文献的荟萃、“论”是编者对传主的简短评语。没有对中国古代天文、数学的全面了解和博览群书的条件,是很难胜任这一任务的。李锐正是这部书的总体设计者和主要执笔人。
作为该书名义上主编的阮元,提到其编辑过程时自云“供职内外,公事频繁”,而“元和学生李锐暨台州学生周治平力居多”。类似的话在他为罗士林《续畴人传》写的序言和应李锐子可玖写的传记中都一再重复。阮元以地方长官的身份办学刻书,先后冠其名出版的《经籍纂诂》,《十三经注疏》、《皇清经解》等大部头经学著作无不出自其幕宾之手,此情自可推论到《畴人传》上。阮自称“本昧于天算”,又认定李锐“深于天算术。江以南第一人也”,因而将《畴人传》的具体工作交李锐来于是十分可能的。
从该书的具体内容来看,“张寿王”“刘洪”“马显”“昭素”“周踪”“刘孝荣”“卫朴”“姚舜辅”“蒋友仁”“王孝通”“李德卿”“谭玉”“杨级”“耶律履”“贝琳”传都与李锐有关著作中的文字完全相同;“虞刘”“王处钠”论中亦可见到“李尚之锐曰”等字样,因而早就有人说:“(畴人传)正传成于阮氏,实乃元和李氏之笔”。
整理古算书
乾隆年间编纂《四库全书》,一大批久经埋没的珍贵古代学经典得以重见天日,戴震、阮元、张敦仁等人都曾致力于罗各种“算经十书”和宋元数学名著。然而这些古书历经辗传抄或翻刻,讹文夺字迭出,所用术语又往往与当时的不同,而校勘和注释的任务是相当艰巨的。
《九章算术》是中国古代数学的代表作,现在公认早期最的校注工作是1820年出版的李潢之《九章算术细草图说》。而早在此之前,李锐就已先后完成《勾股算术细草》和《方新术草》二书,书成后都曾送李潢过目,有李潢的信为证:
“读大著《方程新术草》一卷,正负相当各率,正从前传刻之误,阐古人未发之覆,愉快弥日。《股(算术)细草》,前岁(1807)古愚太守(即张敦仁)见。惠一本,条段各图,细入毫芒,真精思大力之作也。”对照李潢和李锐关于勾股定理及其应用的说明,不难发现二者所用“条段各图”几乎雷同,尤其是李潢书中关于刘微用“出入相补”法证明勾股定理的一段说明显然是完全照搬李锐的。李潢书中关于“方程新术”的解释,基本上也是因袭李锐的著作。
李锐也曾撰写《海岛算经细草》和《缉古算术衍》、二书均已失传。但张敦仁有《缉古算术细草》传世,李锐曾为之算校并作跋,有人“疑此细草即以《缉古算术衍》为兰本,而扩其意耳。”李锐又协助张敦仁完成《求一算术》和《开方补记》二书。
李锐还曾整理过《孙子算经》、《测圆海镜》、《益古演段》、《数书九章》、《四元玉鉴》、《杨辉算法》等。
疏解调日法和求一术
调日法是中国古代天文学家用分数来近似表达天文基本数据的一种数理方法,但是“元明以来畴人子弟,罔识古义,竞天知其说者。”李锐在读《宋书?律历志》的时候,注意到其中周琼转述“宋世何承天更以四十九分之二十六为强率,十七分之九为弱率,于强弱之际以求日法”的意义,他解释道:何氏以26/49和19/17为上、下限,将朔望月的奇零部分表示为(26×15+9×1)/(49×15+17×1)=399/752,即选取强、弱二率适当的加权平均来近似表达观测值,这就是调日法的本质。上述分数中分子叫作朔余,分母叫作日法。
以此为契机,李锐对51家古代历法进行了考察,试图将每一历法所给出的日法和朔余二值表示成上述带权加成的形式,并以此推测它们是否应用调日法而来。这一工作使调日法这-古代分数近似法重新受到重视,被人称为“尤为抉尽间奥,皆必传之作,不但与秦氏书为羽翼也。”
但是从现代数学的观点来看,位于两个既约分数之间的任何分数都可以表示为它们二者的带权加成形式,因此仅以此来判定古代历法的数据系由调日法而来是欠严谨的。况且由于精度所限和运算之繁复,古代制历者也不大可能全用这种累乘累加的方法来确定其日法和朔余。李锐大约感到了后一困难,他又创造了一种“有日法求强弱(数)”的方法,其目的仍然是将朔余与日法的比值表示为26/49和9/17的带权加成。若以A表示日法,x和y分别表示强、弱二数,李锐提出的问题相当与求解二元一次不定方程:47x+17y=A,其术文提供了一种依赖于求一术的简捷算法,从而在中国数学史上第一次沟通了二元一次不定方程与同余式组这两类问题之间的联系。
研究代数方程论
李锐对代数方程论的兴趣发轫于对秦九韶、李冶等末元数学家著作的整理与研习,但其直接导因却是汪莱在《衡斋算学》第五册中对各类方程是否仅有一个正根的讨论。在为汪莱所作的跋文中,他将汪莱所得到的96条“知不知”归纳为三条判定准则,其中第一条相当于说系数序列有一次变号的方程只有一个正根,第三条相当于说系数序列有偶数次变号的方程不会只有一个正根;它们与16世纪意大利数学家卡当提出的两个命题十分相似。
在《开方说》中,李锐则给出了更一般的陈述:“凡上负、下正,可开一数”,“上负、中正、下负,可开二数”,“上负、次正、次负、下正,可开三数或一数”,“上负、次正、次负、次正、下负,可开四数或二数”;推而广之,他的意思相当于说:(实系数)数字方程所具有的正根个数等于其系数符号序列的变化数或者比此变化数少2(精确的陈述应为“少一个偶数”)。这一认识与法国数学家笛卡儿于1637年提出的判别方程正根个数的符号法则是不分伯仲的。
除了关于方程正根个数的判定法则之外,《开方说》中还有许多其他的重要成果。例如李锐首先引进了负根和重根的概念;他又将方程的非正数解称为“无数”,并声称“凡无数必两,无一无数者”,这里隐约含着虚根共扼出现的思想。李锐又在整数范围内讨论了二次方程和双二次方程无实根的判别条件,创造了先求出一根首位再由变形方程续求其余位数字和其余根的“代开法”,还对末元算书中所包含的各种方程变形法,如倍根变形、缩根变形、减根变形、负根变形,逐一进行了解释并加以完善。
所有这些内容,标志着李锐在方程论领域的工作突破了中国古典代数学的窠臼,成为清代数学史上一个引人注目的理论成果。
❼ 带有“文杰”两个字的古诗有哪些
1、初,福建中军使薛文杰,性巧佞,璘喜奢侈,文杰以聚使用求媚,璘以为国计使,亲任之。——《资治通鉴》
2、壬午,广西全茗州土官许文杰率诸猺以叛,寇茗盈州,杀知州事李德卿等,命湖广行省督兵捕之。——《续资治通鉴》
3、赞自是吾文杰思,殆无一字空设,奇变不穷,同合异体, 乃自不知所以称之。此书行,故应有赏音者。——《南史·列传》
4、礼毕,以俘馘徇于都城,守贞首级枭于南市,诸子并贼党孙愿、刘芮、 张延嗣、刘仁裕、僧总伦、靖余、张球、王廷秀、焦文杰、安在钦等并磔于西市, 余皆斩之。——《旧五代史·后汉》
5、而 闽地狭,国用不足,以中军使薛文杰为国计使。文杰多察民间阴事,致富人以罪, 而籍没其赀以佐用,闽人皆怨。——《新五代史·世家·闽世家第八》
6、其夏,桓所管苏茂州,又以乡兵五千寇邕州所管绿州,都巡检杨文杰击走之。太宗志在抚宁荒服,不欲问罪。——《宋史·列传》