⑴ 看到一篇讲投资组合信用风险的文章,里面说序贯蒙特卡洛方法,请问这种方法的详细解释,谢谢。
什么叫“序贯”?
蒙特卡洛方法是一种模拟方法,主要思想是在一个特定的样本中重复进行大量抽样,从而模拟出现实世界中的数据形态的一种方法,一般使用计算机进行。当然,样本是有要求的,抽样方法也是特定的。更详细的牵涉到比较深的数学,尤其是随机过程,还有计量经济学、统计。建议去看书,一两篇帖子说不清楚。
⑵ 什么是蒙特卡洛模拟( Monte Carlo simulation)
我们一直面对着不确定,不明确和变异。甚至我们无法获得信息,我们不能准确的预测未来。蒙特卡洛模拟( Monte Carlo simulation)让您看到了您决策的所有可能的输出,并评估风险,允许在不确定的情况下制定更好的决策。蒙特卡洛模拟( Monte Carlo simulation)是一种计算机数学技术,允许人们在定量分析和决策制定过程中量化风险。这项技术被专家们用于各种不同的领域,比如财经,项目管理,能源,生产,工程,研究和开发,保险,石油&天然气,物流和环境。蒙特卡洛模拟( Monte Carlo simulation)提供给了决策制定者大范围的可能输出和任意行动选择将会发生的概率。它显示了极端的可能性-最的输出,最保守的输出-以及对于中间路线决策的最可能的结果。这项技术首先被从事原子弹工作的科学家使用;它被命名为蒙特卡洛,摩纳哥有名的娱乐旅游胜地。它是在二战的时候被传入的,蒙特卡洛模拟( Monte Carlo simulation)现在已经被用于建模各种物理和概念系统。蒙特卡洛模拟( Monte Carlo simulation)是如何工作的蒙特卡洛模拟( Monte Carlo simulation)通过构建可能结果的模型-通过替换任意存在固有不确定性的因子的一定范围的值(概率分布)-来执行风险分析。它一次又一次的计算结果,每次使用一个从概率分布获得的不同随机数集。根据不确定数和为他们制定的范围,蒙特卡洛模拟( Monte Carlo simulation)能够在它完成计算前调用成千上万次的重复计算。蒙特卡洛模拟( Monte Carlo simulation)产生可能结果输出值的分布。通过使用概率分布,变量能够拥有不同结果发生的不同概率。概率分布是一种用来描述风险分析的变量中的不确定性的更加可行的方法。常用的概率分布包括:正态分布(Normal)-或"钟型曲线".用户简单的定义均值或期望值和标准差来描述关于均值的变异。在中部靠近均值的值是最有可能发生的值。它是对称的,可以用来描述多种自然现象,比如人的身高。可以通过正态分布描述的变量示例包括通货膨胀率和能源价格。对数正态分布(Lognormal)-值是正偏的,不像正态分布那样是对称的。它被用来代表不会小于零但可能有无限大正值的结果。可以通过对数正态分布描述的变量示例包括房地产价值,股票价格和石油储量。均匀分布(Uniform)-所有的值发生的机会相等,用户只需制定最小和最大值。可以通过均匀分布描述的变量示例包括一个新产品的制造费用或未来销售收入。三角分布(Triangular)-用户指定最小,最可能和最大值。在最可能附近的值最可能发生。可以通过三角分布描述的变量示例包括每时间单位内的过去销售历史和库存水平。PERT分布-用户指定最小,最可能和最大值,类似三角分布。在最可能附近的值最可能发生。然而在最可能和极值之间的值比三角分布更有可能发生;那就是说,the extremes are not as emphasized. 可以通过三角分布描述的变量示例包括在项目管理模型中的一项任务的持续时间。离散分布(Discrete)-用户指定最可能发生的值和每个值的可能性。比如关于诉讼结果的示例,20%的机会陪审团判决无罪,30%的机会陪审团判决有罪,40%的机会审批有效,10%的机会审批无效。在蒙特卡洛模拟( Monte Carlo simulation)过程中,值被从输入概率分布中随机抽取。每个样本集被称为一次迭代,从样本获得的结果被记录。蒙特卡洛模拟( Monte Carlo simulation)执行这样的操作成百上千次,可能结果形成一个概率分布。用这种方法,蒙特卡洛模拟( Monte Carlo simulation)生成了一个更加全面关于将会发生的结果的视图。它不仅仅告诉什么结果会发生,而且还有结果发生的可能性。蒙特卡洛模拟( Monte Carlo simulation)提供了许多超越确定性或"单点估计"分析的优势:概率结果,结果不仅显示会发生什么,而且还有每个结果发生的可能性图形化报告,因为蒙特卡洛模拟( Monte Carlo simulation)生成的数据,它很容易创建不同结果和他们发生机会的图形。这对于和其他投资者沟通结果是很重要的。敏感性分析,如果只有很少的一些案例,确定性分许就很难发现哪个变量对结果影响最大。在蒙特卡洛模拟( Monte Carlo simulation)中,很容易发现哪个输入对底线结果有最大的影响。情境分析,在确定性模型中,对于为不同输入值的不同组合建模来真实的查看不同情境的效果是很困难的。使用蒙特卡洛模拟( Monte Carlo simulation),分析员能够正确的查看当确定的输出发生时某个输入对应的值。这对于进一步的分析来说是无价的。相关性输入,在蒙特卡洛模拟( Monte Carlo simulation)中,可能要建模输入变量之间的相关关系。它对于准确的描绘在某些因子增长时,其它的因子是如何增长或下降的情况时是重要的。
⑶ 蒙特卡洛分析是什么
蒙特卡罗分析法,是一种采用随机抽样(Random Sampling)统计来估算结果的计算方法,可用于估算圆周率,由约翰·冯·诺伊曼提出。由于计算结果的精确度很大程度上取决于抽取样本的数量,一般需要大量的样本数据,因此在没有计算机的时代并没有受到重视。
用此方法求圆周率,需要大量的均匀分布的随机数才能获得比较准确的数值,这也是蒙特卡罗分析法的不足之处。
研究历史
第二次世界大战时期,匈牙利美藉数学家约翰·冯·诺伊曼(John von Neumann,1903.12.28—1957.02.08)(现代电子计算机创始人之一)在研究中子的实验中采用了随机抽样统计的手法。
因为当时随机数的想法来自掷色子及轮盘等赌博用具,所以就形象地用摩纳哥Monaco的赌城蒙特卡罗来命名这种计算方法。
如今,蒙特卡罗分析法被应用于各个领域,如求解函数的定积分,运输流量分析,人口流动分析,股票市场波动的预测,量子力学分析等等。