『壹』 地質雷達的天線頻率,探測深度和解析度三者之間的關系是什麼
脈沖雷達有調制頻率和重復頻率,調制頻率也就是常說的天線頻率,一般地說,天線頻率越高探測越淺,重復頻率越高也越淺。解析度是調制脈沖越窄越高,但能量也小了探測就近。天線頻率高了解析度也高。也可以說解析度高了相對就探測近。
『貳』 地質雷達的介紹
地質雷達(Ground Penetrating Radar(GPR))是探測地下物體的地質雷達的簡稱。
『叄』 地質雷達
3.3.7.1 方法簡介
3.3.7.1.1 基本原理
地質雷達也稱探地雷達,是利用高頻電磁波束在界面上的反射來探測目標物,由發射天線和接收天線組成。發射天線向地下發射高頻短脈沖電磁波,接收天線則接收來自地下介質交界面的反射電磁波。由於電磁波向地下傳播速度主要受地下介質電性控制,在介質電性發生變化的界面,電磁波會發生反射。通過研究電磁波在介質中的傳播速度、介質對電磁波的吸收及介質交界面的反射,並用時間剖面圖像表示出地下各分界面的形態,從而推測地下地質體及地層結構的分布規律。
3.3.7.1.2 應用范圍及適用條件
地質雷達是一種高解析度探測技術,可以對淺層地質問題進行詳細的地質填圖,淺層埋藏物進行無損探測。由於電磁波能量在碳酸鹽岩區衰減快,勘探深度較淺主要適用於碳酸鹽岩裸露或覆蓋層淺的地區,目前廣泛用於地基探查、地下空洞、岩溶、破碎帶、斷層等地質構造探測。
要求發射的電磁波能量必須足夠大,探測距離能夠達到目標體,並能返回地面被系統接收;目標體阻抗差別足夠大,有足夠的反射或散射能量為系統所識別;目標體的幾何形態必須盡可能了解清楚,正確選用天線中心頻率;測區干擾不足以影響目標物的反射信息。
3.3.7.1.3 工作布置原則與觀測方法
主測線應垂直地下目標體走向,輔助測線平行目標體走向,可更好地反映目標體形態,測線應盡量通過已有的井位,以利於地層的對比。
目前常用的觀測方法有剖面法和寬角法兩種。
剖面法:發射天線和接收天線以固定間距沿測線同步移動的一種測量方式。
寬角法:發射天線固定在地面某一點上不動,而接收天線沿測線逐點移動,記錄地下各個不同界面反射波的雙程走時的測量方式。
3.3.7.1.4 資料整理及成果解釋
檢查驗收合格的原始數據,經濾波及二維偏移歸位等處理,經過反射層的拾取,編繪探地雷達圖像剖面,最終形成推斷成果圖等。
由於雷達反射界面是電性界面,與地層分界面並不一致,如相鄰地層有相近的波阻抗、同一岩層中的含水帶界面、多個薄層的地質界面組合等。同時雷達時間剖面轉換為深度剖面的精度,解析度的限制,旁側界面反射波的影響等因素,給雷達資料帶來很多假象,使雷達剖面解釋存在多解性。因此成果解釋必須結合地質、鑽探資料,根據反射波組的波形與強度特徵,通過同相軸的追蹤,確定反射波組的地質意義,建立測區地質—地球物理模型,構築地質—地球物理綜合解釋剖面。
3.3.7.2 試驗情況
本次實驗主要選擇了表層帶富水塊段納堡村地區、天然出露的岩溶水源地皮家寨工區,目的是為了查明地表至30m深度的蓋層結構、完整穩定性、水文地質結構、岩溶發育特徵及富水性。對裸露型隱伏的岩溶水源地大衣村和萬畝果園及覆蓋型隱伏的岩溶水源地三家村和大興堡實驗區擬實施鑽孔位置也布置了少量地質雷達剖面。共布置剖面94條,總長3.4km,其中納堡村實測66條剖面,長1635m。
本次試驗使用SIR-20型地質雷達,天線類型SIR-100MHZ,掃描時窗250~600ns,工作方法為連續剖面測量。
3.3.7.3 主要成果
納堡村探測結果,表層結構大致分為兩層:第一層為第四系覆蓋層,岩性為粘土,厚度在2~6m,時窗為0~100ns,表現為能量強、頻率較高,連續性較好的波組特徵;第二層為個舊組風化灰岩,厚度8~16m,時窗為50~300ns,表現為能量較弱且變化大、頻率較低,連續性差的波組特徵;向下則表現為無明顯反射或雜亂零星反射的「平靜帶」波組特徵,表明已進入基岩(完整灰岩)層。
圖3-18為納堡小學L20線的測量結果,雷達反射波大致分為三層,第一層時窗0~80ns,為能量強、頻率較高的波組特徵,深度約5m,反映了第四系覆蓋層;第二層時窗80~300ns,為能量弱、變化大、頻率較低的波組特徵,深度約5~16m,反映了風化灰岩層;第三層時窗300ns以上,為無明顯反射或雜亂零星的波組特徵,推斷已進入完整的灰岩層。在剖面10~15m處,時窗范圍160~200ns,深度約9~12m范圍內,地質雷達記錄出現明顯的強反射波異常,推斷解釋為岩溶裂隙含水層。經施工的淺鑽驗證,覆蓋層厚5.15m,5.15~15m岩溶發育,以溶隙、溶洞、溶孔為主,為主要含水層段,涌水量36m3/d,15m以下岩溶不發育,富水性弱,與推斷結果吻合。
圖3-18 瀘西小江流域納堡村納堡小學L20線地質雷達曲線
納堡村賓珍紅商店地質雷達測量未發現異常,反射波為明顯的兩層,頂部覆蓋層為高能量波特徵,時窗0~100ns,厚度約6m,下部為基岩的平靜弱反射波特徵,經ZK2淺鑽驗證,基岩埋深6.7m,孔深30.3m未見水,探測結果與驗證結果一致。
納堡村實驗點共圈出8處地質雷達異常,經鑽孔驗證4處,除1處水量小外,3處表層岩溶水較豐富。
圖3-19為皮家寨大泉旁實測地質雷達剖面,大致可分為兩層,第一層時窗0~60ns,波組連續穩定,反映出第四系覆蓋層厚度為1~3m;時窗60~300ns,地質雷達曲線顯示為雜亂反射、振幅變強、頻率變低的異常現象,推斷該區地下3~16m之間的個舊組灰岩中岩溶裂隙較為發育,局部存在較大充填或未充填的溶洞,如L73線7m、28m、55m處推斷為岩溶含水區,與高密度電法38線100~110點的低阻異常對應。經鑽孔驗證,溶洞,溶孔發育,與推斷結果吻合。
圖3-19 瀘西小江流域皮家寨L73線地質雷達曲線
3.3.7.4 結論
地質雷達反射波組特徵:岩溶裂隙含水層為明顯的強反射波異常;第四系覆蓋層為能量強、頻率較高,連續性較好的反射波;風化灰岩層為能量較弱且變化大、頻率較低,連續性差的反射波;完整灰岩層為無明顯反射或雜亂零星反射的「平靜帶」特徵。
地質雷達在探測深度0~30m范圍內,解析度較高,對表層岩溶裂隙發育帶探測效果較好,劃分的覆蓋層厚度較接近,誤差均小於1m。推斷的岩溶發育異常帶,准確度很高,是表層岩溶找水的有效方法之一。
『肆』 地質雷達探測與聲波探測有哪些異同點
我們公司代理俄羅斯OKO-2地質雷達和美國GSSI,SIR-20\SIR300地質雷達。說下雷達的吧
地質雷達是電磁波,通過地下無知本身的反射來測試地質情況。
北京西尼德克儀器設備有限公司
『伍』 探地雷達(GPR)
探地雷達是一種既古老而又年輕的物探技術,90年代以後才在我國得到較多的應用。
早在90多年以前,國外就曾利用該技術作過不可見目標的探測試驗,但是直到70年代美國地球物理勘查設備公司(GSSI)才第一次研製成功SIR探地雷達系列,並取得一批實用成果。由於GPR技術具有其他物探方法無與倫比的淺層高解析度的特點,20多年來該項技術已取得長足的進展。儀器不斷更新換代,資料採集、處理、顯示和解釋方法不斷革新,應用領域不斷擴大。目前,GPR技術已成為地質調查的一種重要技術。
一、基本原理簡介
GPR技術是一種高頻(10~1000MHz)電磁技術。但是,它的工作方法卻與地震相似。通過GPR天線向地質體內發射一短脈沖信號。信號在地質體內的傳播主要取決於地質材料的電特性。當這種電特性發生變化時,GPR信號將發生反射、折射等現象。利用放置在相應位置上的接受器將信號接受下來,經放大、數字化處理和顯示,為解釋提供必要的數據和圖像。除人們熟悉的反射工作方式外,GPR還有多種工作方式,如共中心點、廣角反射、折射和透射等。各種方式都可以用於探測信號在地下的傳播速度和能量衰減。影響GPR探測深度的因素主要有雷達系統的本身性能(如頻率、能量等),被探測材料的物理特性。
二、儀器的發展
1.國外的主要進展
(1)70年代中期,GSSI公司的SIR探地雷達系列代表了首批可在商業上使用的儀器系統。日本的OYO公司推出了GeoRadar系列;微波公司推出了MK探地雷達系列。80年代中期,A-Cubed公司與加拿大地調所(GSC)合作,推出了高性能的Pulse EKKO數字雷達;瑞典地質公司及日本公司等還研製了可用於跨孔測量的孔中透視雷達系列。
(2)90年代以後,GPR儀器又有了一些新發展,相繼推出了多態雷達系統、層析雷達系統。三維雷達技術具有明顯提高解決淺層地質問題的能力,但卻因耗時費力得不到普遍的應用。為此,Frank Lehman等研製出全自動的組合地質雷達激光經緯儀系統。利用該系統,一人可在2h內完成25m×25m范圍的三維數據採集。三個方向上的定位精度為±2.5cm。數據處理、成圖可在1h內完成,比傳統方法的效率提高5~10倍。
(3)儀器輕便、結實、通用是儀器廠商和用戶追求的目標之一。為實現該目標,1998和1999年加拿大的SSI公司先後推出了NogGin250、500型GPR儀器,將該公司生產的Pulse EKKO系統的全部雷達功能壓縮在一個簡單的NogGin輕便儀器箱內。但該儀器不僅是對原儀器進行簡單的壓縮,而是從基本設計原理上進行了改進。將NogGin與該公司研製的軟體「SPIView」配合使用,用戶則可以通過簡單的操作在無限卷圖上查看數據圖像。
2.國內的進展
90年代我國引進了一批地質雷達儀器並將它們用於工程和災害地質調查。近年來,國內地質雷達儀器的研製也取得了較大的進展。煤炭科學院西安分院物探所研製成功了適用於礦山防爆要求的DVL防爆型礦井雷達系列。原電子工業部第二十二研究所相繼研究成功了LT-1,2,3型探地雷達。航天工業總公司愛迪爾國際探測技術公司推出了商品化的探地雷達系列產品。國內外生產的多種類型的GPR儀器,一般都具有較好的性能,可供不同探測目標選用。
三、資料採集、處理和顯示技術的進展
(1)90年代初,GPR資料由單點採集過渡到連續採集,使GPR技術的應用向前邁進了一大步。
(2)地震資料處理的方式基本適用於GPR資料的處理。為了更好地將石油地震的先進技術引進到GPR領域,一些公司之間開展了合作。比如,1990年後SSI公司與地震圖像軟體公司(SISL)達成協議,SSI公司按地震資料輸出格式設計Pulse EKKO探地雷達系統,將SISL公司開發的地震資料處理軟體用於GPR資料的處理。這些軟體包括各類濾波、反褶積及資料顯示等。
(3)近幾年來,國內外專家對各類模擬方法作了研究,如How-Wei Chen等利用時間域交叉網格有限差分數值法,在二維介質內研究、試驗、補充了數值探地雷達波傳播的模擬。出現了一些利用GPR信號能量衰減層析成像的方法,如應用頻率漂移法的電磁波衰減層析成像法、利用形心頻率下移的雷達衰減成像方法等。
(4)據SSI公司1998年底披露,該公司即將發行改進型的軟體-EKKO三維2型軟體。採用2型三維軟體,用戶可以在方便的條件下試驗下述不同軟體的組合處理,以便提高數據的立體特徵。該三維軟體包括去頻率顫動、雜訊濾波、背景清除、包絡線和偏移。在資料顯示方面,有的學者提出了將石油工業的四維技術用於時空域內採集的GPR資料,這樣就有可能製成流體(如污染物羽狀流)在地下傳播的電影圖像。
(5)透射法取得的資料必須經過處理才能顯示成解釋所需的資料。SSI公司於1997年開發出可用於將GPR透射資料變換成可用於解釋圖像的軟體。實施步驟包括:原始資料編輯和歸類、採集波至、利用美國礦業局的地震層析軟體對資料進行層析成像處理,繪制速度、衰減及波散圖件以及圖像處理等。
(6)針對當前GPR技術的應用研究中,只側重探測能力試驗和數字模擬研究而對GPR資料解釋研究不夠的現狀,雷林源提出了與GPR資料解釋工作有關的基本理論和方法以及一些基本問題的求解。提出的基本問題包括電磁波在地層中傳播的波阻抗;地層分界面上電磁波場強的反射與透射系數;地層中電磁波速度和反射波的相位以及GPR探測深度等。
四、應用及應用研究實例
GPR技術經過多年的發展,證明具有多方面的用途。國內刊物對一些普通的應用已給予了較多的介紹。這些應用包括:在水文地質方面可以用於淺部地下環境調查,土壤-基岩面探測,基岩節理、裂隙和層理的確定;在工程地質勘察方面可用於調查地下埋藏物,隧道、岩溶、建築地基評價,道路、橋梁、水壩探測和質量無損檢測;在災害地質勘察方面可以用於滑坡、隱伏洞穴的探測以及考古方面的用途等。本文謹就GPR在地質環境污染、農業、軍事等方面的應用實例作一簡單的介紹。
1.調查地質環境污染
(1)一座建立在石灰岩地區的硝化纖維廠,由於污水的泄漏導致硝化纖維對地質環境的污染。為了探測地表至潛水面(約60m)岩溶結構可能捕獲的硝化纖維,在18個30米深和7個50m深的鑽孔中作了井中雷達探測。對收集到的資料作常規處理後,採用惠更斯-基爾霍夫(HK)疊加法繪制出三維雷達圖。從深度為10m的重建圖像上可以看出幾個受硝化纖維污染的位置。在後來的開挖中,證示了GPR的探測成果。
(2)探測碳氫污染物試驗。多年來的野外工作和試驗已證明GPR具有調查地質環境污染的能力。國外專家在1m×0.4m×0.5m箱體中作了精心的試驗,試圖再一次驗證GPR探測污染的能力,並用相關模型說明雷達響應與一些水文參數間的關系。通過試驗和GPR數據的處理和解釋得出結論:在污染物達到飽和時,利用GPR探不到潛水面;在相鄰未受污染區可探到潛水面時,GPR可用於監測潛水面上的污染物;小型實驗有助於探測或驗證砂質土壤的水文地質參數,如毛細作用水頭、污染物羽狀流的傳播速度;GPR能成功探測石油污染。
2.農業方面的應用
(1)沙漠中的沙丘和沙席是雨水良好的儲集層,有可能成為灌溉的水源。利用GPR在沙特東部沙漠區作了探測。探測結果劃出了圓頂形沙丘上部與其下部鹽層間的界面、沙丘內的交錯層理及潮濕帶;探測還指出,圓頂沙丘可能是新月形沙丘的演變結果。在另一個沙漠場地的調查成果指出了沙丘內水流傳播的兩條可能途徑。
(2)探測土壤含水量。自然土壤中的含水量是影響介電常數變化的主要因素。A.Chanzy等利用地面和空中兩種方式的GPR試驗,證明GPR測量數據與土壤含水量間具有很強的聯系。可以用GPR技術探測土壤中的含水量。
(3)美國正在形成現代化的農業生產,GPR技術被用於探測特殊農業場地的土層、上層滯水、脆盤土、水文優先流徑和壓實土壤等與現代化農業有關的土壤信息。
3.探測古灰岩洞
前幾年已有一些介紹利用GPR技術探測一般洞穴的文章,但未見到探測古灰岩洞及其塌陷特徵的報道。為了配合開發美國得克薩斯州老灰岩洞的地下水,對該區的溶洞系統作了詳細的研究。GPR資料顯示了未擾動的主岩、過渡構造(如張性裂隙、古溶洞壁及洞頂等)和各種規格的角礫岩的分布。本探測成果證明,GPR技術是調查與近表灰岩系統及塌陷古溶洞有關特徵的有效方法。
4.南極永凍場地安全檢查
在一個南極考查計劃利用的場地內,發現地下0.3~0.5m位置的冰內有一些融水坑(據2000年初中央電視台報道,我國南極科考隊也發現了與此相似的冰水湖),它們將給場地的利用帶來負面的影響。為此,利用GPR對場地進行了調查。通過對記錄的繞射波結構及其他信息的分析,在3.5m左右深度發現一些有40m長、含分散水的冰層帶,但含水量較少。另外,根據GPR資料顯示,鹹水層以上各層次的振幅沒出現異常,說明場地下不可能存在其他融水坑。後來經重車和飛行器作了大量荷載試驗,場地沒出現任何與冰密度有關的事故。由此可見,GPR可作為南極冰蓋場地安全檢查的工具。
5.軍事用途
瑞士科學家正在研製一種可用於排除地雷的GPR探測系統。該系統以探地雷達和用於成像的金屬探測器為基礎。探測器可以區別那些與GPR信號相似而金屬含量不同的目標(如同樣大小的地雷和石頭);而GPR則可以將探測器給出的相似結果(如地雷和金屬垃圾)區分開來。另外,據SSI公司1999年10月披露,利用GPR散射能量平面圖可以發現塑料性地雷。
6.區域水文地質調查
雷達相圖被定義為某一特定地層產生的雷達反射圖像特徵的總和,指的是雷達剖面資料上肉眼可見的反射波的不同組合形式。雷達資料觀測中,地質體的構造和結構特徵會影響雷達響應並產生特徵效應。這些特徵效應被稱為雷達相圖元素。自1990年以來,荷蘭TNO應用地學研究所在荷蘭30多個適合於GPR調查試驗的點上作了測量,用於評價GPR對不同水文地質目標成像和描述目標特徵的可能性。探查成果揭示出荷蘭不同沉積環境下雷達相圖元素的特徵,將具有代表性的反射圖像編成簡要的「雷達相圖集」,該相圖集對確定地下水文地質層序的位置有益。據悉,美國也利用GPR對多個州做了類似的調查。
『陸』 地質雷達最深探測可以達到多少啊
理論值24米,實際會有波動,國內一般在20米,特殊情況可達30米
『柒』 地質雷達探點測測間距多少米
1) 手持式雷達測速儀的特點是價格便宜,靈活性強,可以移動操作,所以手持式雷達測速器也是
警察最常用的設備。根據發射功率的不同有效測速距離在300-800米之間,但是由於手持式雷達採用
的是模糊瞄準,所以根據道路車輛狀況的不同,警察並不會在很遠的距離測速,在高速路通常會在
150-300米范圍測速,在城際公路、國道的測速范圍在100-200米左右。如果警察沒有測速不會產生
雷達信號,反測速雷達也不會報警。
2) 車載式雷達測速抓拍系統,可以全天候工作,操作方便工作更舒適,越來越廣泛地裝備給警察
部隊和高速路管理機關。為了提高抓拍的准確度,雷達會在雷達的前方100米左右形成警戒區,對於
超速的駕駛員拍照。所以使用反測速雷達的用戶要注意,當行使在空曠地帶接受到報警信號時(如
國道、環線和高速路),90%是雷達測速。
★注意:在標有 「進入雷達測速區」 時,在這路段中不要超速,否則等車到攝像機前就算減速也
會被拍照的。
有些人安裝一些日本的產品(衛星眼)能測出該路段限速多少。
『捌』 在土木工程檢測中,地址雷達探測的市場價一般是多少呢,多少錢一次。
大哥是地質雷達吧, 分情況:市政管線按長度(米)收費;房屋檢測什麼的按次收費。現在地質雷達(探地雷達)沒有收費標准。
『玖』 哪有地質雷達或地質探測儀出租的,求公司名稱和電話
做哪方面?尋寶還是工程?