⑴ 看到一篇講投資組合信用風險的文章,裡面說序貫蒙特卡洛方法,請問這種方法的詳細解釋,謝謝。
什麼叫「序貫」?
蒙特卡洛方法是一種模擬方法,主要思想是在一個特定的樣本中重復進行大量抽樣,從而模擬出現實世界中的數據形態的一種方法,一般使用計算機進行。當然,樣本是有要求的,抽樣方法也是特定的。更詳細的牽涉到比較深的數學,尤其是隨機過程,還有計量經濟學、統計。建議去看書,一兩篇帖子說不清楚。
⑵ 什麼是蒙特卡洛模擬( Monte Carlo simulation)
我們一直面對著不確定,不明確和變異。甚至我們無法獲得信息,我們不能准確的預測未來。蒙特卡洛模擬( Monte Carlo simulation)讓您看到了您決策的所有可能的輸出,並評估風險,允許在不確定的情況下制定更好的決策。蒙特卡洛模擬( Monte Carlo simulation)是一種計算機數學技術,允許人們在定量分析和決策制定過程中量化風險。這項技術被專家們用於各種不同的領域,比如財經,項目管理,能源,生產,工程,研究和開發,保險,石油&天然氣,物流和環境。蒙特卡洛模擬( Monte Carlo simulation)提供給了決策制定者大范圍的可能輸出和任意行動選擇將會發生的概率。它顯示了極端的可能性-最的輸出,最保守的輸出-以及對於中間路線決策的最可能的結果。這項技術首先被從事原子彈工作的科學家使用;它被命名為蒙特卡洛,摩納哥有名的娛樂旅遊勝地。它是在二戰的時候被傳入的,蒙特卡洛模擬( Monte Carlo simulation)現在已經被用於建模各種物理和概念系統。蒙特卡洛模擬( Monte Carlo simulation)是如何工作的蒙特卡洛模擬( Monte Carlo simulation)通過構建可能結果的模型-通過替換任意存在固有不確定性的因子的一定范圍的值(概率分布)-來執行風險分析。它一次又一次的計算結果,每次使用一個從概率分布獲得的不同隨機數集。根據不確定數和為他們制定的范圍,蒙特卡洛模擬( Monte Carlo simulation)能夠在它完成計算前調用成千上萬次的重復計算。蒙特卡洛模擬( Monte Carlo simulation)產生可能結果輸出值的分布。通過使用概率分布,變數能夠擁有不同結果發生的不同概率。概率分布是一種用來描述風險分析的變數中的不確定性的更加可行的方法。常用的概率分布包括:正態分布(Normal)-或"鍾型曲線".用戶簡單的定義均值或期望值和標准差來描述關於均值的變異。在中部靠近均值的值是最有可能發生的值。它是對稱的,可以用來描述多種自然現象,比如人的身高。可以通過正態分布描述的變數示例包括通貨膨脹率和能源價格。對數正態分布(Lognormal)-值是正偏的,不像正態分布那樣是對稱的。它被用來代表不會小於零但可能有無限大正值的結果。可以通過對數正態分布描述的變數示例包括房地產價值,股票價格和石油儲量。均勻分布(Uniform)-所有的值發生的機會相等,用戶只需制定最小和最大值。可以通過均勻分布描述的變數示例包括一個新產品的製造費用或未來銷售收入。三角分布(Triangular)-用戶指定最小,最可能和最大值。在最可能附近的值最可能發生。可以通過三角分布描述的變數示例包括每時間單位內的過去銷售歷史和庫存水平。PERT分布-用戶指定最小,最可能和最大值,類似三角分布。在最可能附近的值最可能發生。然而在最可能和極值之間的值比三角分布更有可能發生;那就是說,the extremes are not as emphasized. 可以通過三角分布描述的變數示例包括在項目管理模型中的一項任務的持續時間。離散分布(Discrete)-用戶指定最可能發生的值和每個值的可能性。比如關於訴訟結果的示例,20%的機會陪審團判決無罪,30%的機會陪審團判決有罪,40%的機會審批有效,10%的機會審批無效。在蒙特卡洛模擬( Monte Carlo simulation)過程中,值被從輸入概率分布中隨機抽取。每個樣本集被稱為一次迭代,從樣本獲得的結果被記錄。蒙特卡洛模擬( Monte Carlo simulation)執行這樣的操作成百上千次,可能結果形成一個概率分布。用這種方法,蒙特卡洛模擬( Monte Carlo simulation)生成了一個更加全面關於將會發生的結果的視圖。它不僅僅告訴什麼結果會發生,而且還有結果發生的可能性。蒙特卡洛模擬( Monte Carlo simulation)提供了許多超越確定性或"單點估計"分析的優勢:概率結果,結果不僅顯示會發生什麼,而且還有每個結果發生的可能性圖形化報告,因為蒙特卡洛模擬( Monte Carlo simulation)生成的數據,它很容易創建不同結果和他們發生機會的圖形。這對於和其他投資者溝通結果是很重要的。敏感性分析,如果只有很少的一些案例,確定性分許就很難發現哪個變數對結果影響最大。在蒙特卡洛模擬( Monte Carlo simulation)中,很容易發現哪個輸入對底線結果有最大的影響。情境分析,在確定性模型中,對於為不同輸入值的不同組合建模來真實的查看不同情境的效果是很困難的。使用蒙特卡洛模擬( Monte Carlo simulation),分析員能夠正確的查看當確定的輸出發生時某個輸入對應的值。這對於進一步的分析來說是無價的。相關性輸入,在蒙特卡洛模擬( Monte Carlo simulation)中,可能要建模輸入變數之間的相關關系。它對於准確的描繪在某些因子增長時,其它的因子是如何增長或下降的情況時是重要的。
⑶ 蒙特卡洛分析是什麼
蒙特卡羅分析法,是一種採用隨機抽樣(Random Sampling)統計來估算結果的計算方法,可用於估算圓周率,由約翰·馮·諾伊曼提出。由於計算結果的精確度很大程度上取決於抽取樣本的數量,一般需要大量的樣本數據,因此在沒有計算機的時代並沒有受到重視。
用此方法求圓周率,需要大量的均勻分布的隨機數才能獲得比較准確的數值,這也是蒙特卡羅分析法的不足之處。
研究歷史
第二次世界大戰時期,匈牙利美藉數學家約翰·馮·諾伊曼(John von Neumann,1903.12.28—1957.02.08)(現代電子計算機創始人之一)在研究中子的實驗中採用了隨機抽樣統計的手法。
因為當時隨機數的想法來自擲色子及輪盤等賭博用具,所以就形象地用摩納哥Monaco的賭城蒙特卡羅來命名這種計算方法。
如今,蒙特卡羅分析法被應用於各個領域,如求解函數的定積分,運輸流量分析,人口流動分析,股票市場波動的預測,量子力學分析等等。