㈠ 求Python量化投資教程 百度網盤
python和matlab的共同點都是各種庫十分豐富。python是給懶人用的。matlab是給數學好的人用的。。回。比起python,matlab的大小答簡直不能忍。python是免費的,我用上了Windows正版,AdobeFlash和DW的正版,但是仍然買不起matlab的正
㈡ Python數字貨幣量化交易進階課程大家學的怎麼樣了
Python數字貨幣量化交易進階課程,已經學完了,大體掌握了。
㈢ 怎麼學習python量化交易
找一些含有Python量化分析、Python量化交易的教程,跟著學一學,如果自學難度大,可以報班學習,反正辦法總比困難多!
㈣ 怎麼學習python量化交易
下面教你八步寫個量化交易策略——單股票均線策略
1 確定策略內容與框架
若昨日收盤價高出過去20日平均價今天開盤買入股票
若昨日收盤價低於過去20日平均價今天開盤賣出股票
只操作一隻股票,很簡單對吧,但怎麼用代碼說給計算機聽呢?
想想人是怎麼操作的,應該包括這樣兩個部分
既然是單股票策略,事先決定好交易哪一個股票。
每天看看昨日收盤價是否高出過去20日平均價,是的話開盤就買入,不是開盤就賣出。每天都這么做,循環下去。
對應代碼也是這兩個部分
definitialize(context):
用來寫最開始要做什麼的地方
defhandle_data(context,data):
用來寫每天循環要做什麼的地方
2 初始化
我們要寫設置要交易的股票的代碼,比如 兔寶寶(002043)
definitialize(context):
g.security='002043.XSHE'#存入兔寶寶的股票代碼
3 獲取收盤價與均價
首先,獲取昨日股票的收盤價
#用法:變數=data[股票代碼].close
last_price=data[g.security].close#取得最近日收盤價,命名為last_price
然後,獲取近二十日股票收盤價的平均價
#用法:變數=data[股票代碼].mavg(天數,『close』)
#獲取近二十日股票收盤價的平均價,命名為average_price
average_price=data[g.security].mavg(20,'close')
4 判斷是否買賣
數據都獲取完,該做買賣判斷了
#如果昨日收盤價高出二十日平均價,則買入,否則賣出
iflast_price>average_price:
買入
eliflast_price<average_price:
賣出
問題來了,現在該寫買賣下單了,但是拿多少錢去買我們還沒有告訴計算機,所以每天還要獲取賬戶里現金量。
#用法:變數=context.portfolio.cash
cash=context.portfolio.cash#取得當前的現金量,命名為cash
5 買入賣出
#用法:order_value(要買入股票股票的股票代碼,要多少錢去買)
order_value(g.security,cash)#用當前所有資金買入股票
#用法:order_target(要買賣股票的股票代碼,目標持倉金額)
order_target(g.security,0)#將股票倉位調整到0,即全賣出
6 策略代碼寫完,進行回測
把買入賣出的代碼寫好,策略就寫完了,如下
definitialize(context):#初始化
g.security='002043.XSHE'#股票名:兔寶寶
defhandle_data(context,data):#每日循環
last_price=data[g.security].close#取得最近日收盤價
#取得過去二十天的平均價格
average_price=data[g.security].mavg(20,'close')
cash=context.portfolio.cash#取得當前的現金
#如果昨日收盤價高出二十日平均價,則買入,否則賣出。
iflast_price>average_price:
order_value(g.security,cash)#用當前所有資金買入股票
eliflast_price<average_price:
order_target(g.security,0)#將股票倉位調整到0,即全賣出
現在,在策略回測界面右上部,設置回測時間從20140101到20160601,設置初始資金100000,設置回測頻率,然後點擊運行回測。
7 建立模擬交易,使策略和行情實時連接自動運行
策略寫好,回測完成,點擊回測結果界面(如上圖)右上部紅色模擬交易按鈕,新建模擬交易如下圖。 寫好交易名稱,設置初始資金,數據頻率,此處是每天,設置好後點提交。
8 開啟微信通知,接收交易信號
點擊聚寬導航欄我的交易,可以看到創建的模擬交易,如下圖。 點擊右邊的微信通知開關,將OFF調到ON,按照指示掃描二維碼,綁定微信,就能微信接收交易信號了。
㈤ 完全不懂金融,想學習量化投資需要學習哪些金融科目
我個人認為學習量化投資在金融方面需要具備兩個方面的知識:
1、首先是要了解金融市專場與金融產品,只有屬這樣才能在眾多市場與標的中選擇合適的來構建投資組合,這一方面需要了解的基礎知識有:金融市場與金融機構、投資學、金融衍生品等等;
2、其次是需要了解如何量化,相信你應該有足夠的IT背景,編程沒啥問題,其次的話就是要了解數理來溝通金融產品選擇與編程落地,需要了解的科目有:概率論、統計學、計量經濟學、金融經濟學、數理金融等。
㈥ 用Python 進行股票分析 有什麼好的入門書籍或者課程嗎
個人覺得這問題問的不太對,說句不好的話,你是來搞編程的還是做股票的。
《Learn Python The Hard Way》,也就是我們所說的笨辦法學python,這絕對是新手入門的第一選擇,裡面話題簡練,是一本以練習為導向的教材。有淺入深,而且易懂。
其它的像什麼,《Python源碼剖析》,《集體智慧編程》,《Python核心編程(第二版)》等題主都可以適當的選擇參讀下,相信都會對題主有所幫助。
最後,還是要重復上面的話題,炒股不是工程學科,它有太多的變數,對於現在的智能編程來說,它還沒有辦法及時的反映那些變數,所以,只能當做一種參考,千萬不可過渡依賴。
結語:pyhton相對來說是一種比較高端的學科,需要有很強的邏輯能力。所以入門是非常困難的,如果真的要學習,是需要很大的毅力去堅持下去的,而且不短時間就能入門了,要有所心理准備。
㈦ 用Python 進行股票分析 有什麼好的入門書籍或者課程嗎
問題不對,你拿股票當工科看了,理工學院里可沒有一個股票分析專業。股票或者版投資這行有兩個特點,權1. 除了市場數據必看,沒有什麼理論必看。理論跟你實際操作相比是垃圾,這么說不過分;2. 實際能賺錢的經驗,沒有人會公開的。公開會導致失效,會引來對手盤,沒人會跟自己過不去。能賺錢的人基本也沒什麼興趣出書或教課。所以,別嫌給你澆冷水, 如果你想要書籍或者課程的話,就在理工類裡面挑一個接近投資的專業吧,比如 quants。自己沒方向的話,恐怕想求助也難。我是做這個的,但完全是自己摸索。Python 是自學,股票分析也是自己攢經驗值。我的博客或許能給你點啟發: Jacky Liu's Blog , 但最多是啟發而已。你得想出你自己的點子,然後自己去跟市場求證,謝謝 ~
㈧ Python學習,量化交易的應該怎麼學
掘金量化社區就有很多寬客互動交流學習,再說掘金有很多針對新手入門的指引,可以讓您從0到1一步步成為一個合格的quant.
㈨ 有沒有python應用於量化交易的實戰課
丁鵬主講的《量化投資-策略與技術》
有空來掘金量化社區逛逛,與各位寬客互動交流學習
㈩ 用Python怎麼做量化投資
本文將會講解量化投資過程中的基本流程,量化投資無非這幾個流程,數據輸入------策略書寫------回測輸出
其中策略書寫部分還涉及到編程語言的選擇,如果不想苦惱數據輸入和回測輸出的話,還要選擇回測平台。
一、數據
首先,必須是數據,數據是量化投資的基礎
如何得到數據?
Wind:數據來源的最全的還是Wind,但是要付費,學生可以有免費試用的機會,之後還會和大家分享一下怎樣才Wind里摘取數據,Wind有很多軟體的借口,Excel,Matlab,Python,C++。
預測者網:不經意間發現,一個免費提供股票數據網站 預測者網,下載的是CSV格式
TB交易開拓者:Tradeblazer,感謝@孫存浩提供數據源
TuShare:TuShare -財經數據介麵包,基於Python的財經數據包,利用Python進行摘取
如何存儲數據?
Mysql
如何預處理數據?
空值處理:利用DataFrame的fill.na()函數,將空值(Nan)替換成列的平均數、中位數或者眾數
數據標准化
數據如何分類?
行情數據
財務數據
宏觀數據
二、計算語言&軟體
已經有很多人在網上詢問過該選擇什麼語言?筆者一開始用的是matlab,但最終選擇了python
python:庫很多,只有你找不到的,沒有你想不到,和量化這塊結合比較緊密的有:
Numpy&Scipy:科學計算庫,矩陣計算
Pandas:金融數據分析神器,原AQR資本員工寫的一個庫,處理時間序列的標配
Matplotlib:畫圖庫
scikit-learn:機器學習庫
statsmodels:統計分析模塊
TuShare:免費、開源的python財經數據介麵包
Zipline:回測系統
TaLib:技術指標庫
matlab:主要是矩陣運算、科學運算這一塊很強大,主要有優點是WorkSpace變數可視化
python的Numpy+Scipy兩個庫完全可以替代Matlab的矩陣運算
Matplotlib完克Matlab的畫圖功能
python還有很多其他的功能
pycharm(python的一款IDE)有很棒的調試功能,能代替Matlab的WorkSpace變數可視化
推薦的python學習文檔和書籍
關於python的基礎,建議廖雪峰Python 2.7教程,適合於沒有程序基礎的人來先看,涉及到python的基本數據類型、循環語句、條件語句、函數、類與對象、文件讀寫等很重要的基礎知識。
涉及到數據運算的話,其實基礎教程沒什麼應用,python各類包都幫你寫好了,最好的學習資料還是它的官方文檔,文檔中的不僅有API,還會有寫實例教程
pandas文檔
statsmodels文檔
scipy和numpy文檔
matplotlib文檔
TuShare文檔
第二,推薦《利用Python進行數據分析》,pandas的開發初衷就是用來處理金融數據的
三、回測框架和網站
兩個開源的回測框架
PyAlgoTrade - Algorithmic Trading
Zipline, a Pythonic Algorithmic Trading Library